大模型时代,如何让AI客服“听懂人话”、“更有温度”?

本文涉及的产品
智能数据建设与治理Dataphin,200数据处理单元
数据可视化 DataV(企业版),20 个大屏 1 个月
可视分析地图(DataV-Atlas),3 个项目,100M 存储空间
简介: 大模型时代,如何让AI客服“听懂人话”、“更有温度”?

大语言模型浪潮袭来,驱动客服行业发生变革。自2019年以来,随着参数量的扩大,大语言模型推理、文本生成能力开始涌现。然而,从底层模型的技术跃迁,到最终的商业应用与业务落地,仍存在一系列的产品能力、技术架构的升级。因此,我们需要思考的问题是:如何通过技术提升服务品质、效率,降低服务成本,最终实现从技术跃迁到商业价值的转换?
从企业角度来看,基于技术驱动的客服场景,核心的业务价值有三点:成本、效率、业务增长。当AI大模型应用于客服场景后,还带来了数据安全的问题。对此,Quick Service v2.0提出了“1+2”服务套件解决方案,通过Quick Service Agent服务平台,打造两套核心能力:通过AI Chat提升对话理解与问答能力,应对客户复杂指令;通过AI Pilot识别用户诉求,为客服人员提供生成式服务解决方案,最终帮助企业解决成本、效率与业务增长问题,实现降本增效。

image.png


用户习惯转人工?

AI Chat全新问答能力,让服务“接得住”“接得好”


长久以来,企业AI客服面临的一大痛点是:“机器人根本没有用,用户还是习惯转人工,该怎么办?”解决这一问题的关键,在于将问题进行分类,让大小模型“各司其职”:事实类的问题通过小模型处理,开放性、主观性的问题通过大模型进行处理。作为Quick Service v2.0的核心能力之一的AI Chat,便通过大小模型的融合具备了“全新的AI问答能力”:它既能解决已有“标准答案”的基础规则问题,也能通过复杂对话的理解以及多模态的生成能力,使智能客服拥有更强大的对话理解与问答能力。
数据显示,相比于传统机器人,AI Chat问答准确率提升63%,用户对机器人将不再反感,服务自然能“接得住”“接得好”。比如,处于扩张期的某知名餐饮品牌,便通过AI Chat产品能力,将覆盖业务70%以上复杂且高频的问题交付给机器人解决,从而在客服人员减少的情况下,有效提升了服务效率,保证了服务质量。
image.png

复杂指令不理解、个性推荐没温度?

AI Chat全新指令与推荐能力,实现效率与业务双增长


拥有自己IT团队的企业,往往会通过一些开源框架,对大模型的能力进行调用。但是在此过程中,较常出现的问题是:“我己经开始使用大模型做知识准备,但大模型输出不是我想要的,怎么办?”如果把朴素RAG比作休闲的“社区足球”,那么模块化RAG就是专业的“世界杯”,两者在准确程度上存在一定差异。比如,许多应用大模型的企业多为大型企业,说明书非常复杂,此时如果直接调用朴素RAG能力,难以保障识别与理解的准确率;而通过模块化RAG对固定版式进行专门调优,便能对结果、生成内容进行更加准确的控制。
以创建代办场景为例,此前,企业往往通过固定的SOP,指示用户通过点击操作,当用户偏离航道后,机器人将很难对此类场景进行处理。而新的大小模型融合的Quick Service v2.0 AI Chat机器人能够很好规避此类风险,它不仅能够理解用户复杂的指令,还能通过上下文识别用户新会话与新指令,并通过卡片形式与用户进行再次确认,帮助用户自助解决率提升40%

image.png

在指令问题外,AI Chat还能通过历史对话,形成关于用户的年龄、性别等信息记忆,进而根据企业业务活动表格,帮助用户进行个性化推荐。此外,它还能针对生成答案进行编排与控制,比如告知活动信息时顺便查阅天气,提醒用户出行事项。这一更具个性化、温度感的推荐方式,能够帮助企业营销转化率提升13%

image.png


客服接线时长居高不下?服务满意度低?

AI Pilot三大能力,有效提升坐席辅助效率


经过调查发现,客服对客户的问题进行理解、定位,平均花费100秒;翻看查找企业的规范规则后回复用户,平均花费170秒;与上下游部门进行协同,平均花费80秒。可以说,“企业客服的接线平均时长高居不下,满意度和成本都受影响”,成为许多企业普遍面临的问题。对此,我们提供了AI大模型、小模型与AI工作台相结合的解决方案,形成了新的Quick Service AI工作台,通过AI Pilot的客服能力,有效提升了服务效率。
首先,AI Pilot可以提供全新智能辅助能力,为客服人员提供全方位的业务指引和实施辅助。客服人员只需对侧边栏插件AI生成的答案进行校验,即可直接发送给用户,即使在繁重任务之下,依旧可以处理多个并发需求。数据显示,该方式能有效提升服务解决率、服务效率提升16%,某新能源汽车品牌便通过AI Pilot对客户问题进行实时识别,帮助热线客服有效提高了服务效率,改善了用户体验。

image.png

其次,AI Pilot具备全新智能填单能力。在上下游协同过程中,AI大模型可根据对话信息的自动识别,自动填充工单标题、摘要,快速精准概括总结当前问题,将客服人员从繁重的填单工作中解放出来。

image.png

第三,AI Pilot拥有全新智能摘要与总结能力。客服人员以及被转交的服务人员无需翻阅历史对话,即可通过AI总结的摘要了解问题,提供针对性服务。

image.png

目前,Quick Service v2.0已在汽车、餐饮、家电等不同行业落地,帮助企业打造出“能共情”的用户体验,实现了智能推荐、智能填单、内部运营等场景降本增效。随着大模型的不断完善,Quick Service v2.0还将为更智能客服时代的普及提供技术支持与落地探索,帮助企业进一步提升服务品质与效率、降低服务成本,成为大模型时代企业首选的智能客户体验专家。

相关文章
|
2天前
|
人工智能 编解码 算法
ENEL:3D建模革命!上海AI Lab黑科技砍掉编码器,7B模型性能吊打13B巨头
ENEL是由上海AI Lab推出的无编码器3D大型多模态模型,能够在多个3D任务中实现高效语义编码和几何结构理解,如3D对象分类、字幕生成和视觉问答。
34 9
ENEL:3D建模革命!上海AI Lab黑科技砍掉编码器,7B模型性能吊打13B巨头
|
2天前
|
机器学习/深度学习 人工智能 机器人
TIGER:清华突破性模型让AI「听觉」进化:参数量暴降94%,菜市场都能分离清晰人声
TIGER 是清华大学推出的轻量级语音分离模型,通过时频交叉建模和多尺度注意力机制,显著提升语音分离效果,同时降低参数量和计算量。
48 6
TIGER:清华突破性模型让AI「听觉」进化:参数量暴降94%,菜市场都能分离清晰人声
|
3天前
|
人工智能 算法 调度
DeepSeek杀疯了!国产AI大模型如何重构未来技术版图?
【爆款导读】当ChatGPT还在为每月10亿访问量沾沾自喜时,中国AI军团已悄然完成弯道超车。2025年开年,DeepSeek以雷霆之势横扫中美应用商店双榜,上线72小时突破千万DAU,开发者生态激增300%。通过优化算法降低成本、多模态能力提升效率,DeepSeek不仅在用户数量上取得突破,更在实际应用场景中展现强大实力。其开源策略推动技术民主化,助力更多开发者参与AI开发,成为AI军备竞赛中的佼佼者。
132 20
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
以史为鉴,未雨绸缪:身处“大模型掀起的AI浪潮中”的感悟和思考
本文旨在帮助读者更深入地理解大模型和AI技术,重点介绍关键技术革新的背景与影响,特别是本次大模型时代和新一轮AI浪潮的推动因素与发展历程。
|
6天前
|
人工智能 Linux 开发工具
Kiln AI:零代码实现微调模型!自动生成合成数据与微调模型的开源平台
Kiln AI 是一款开源的 AI 开发工具,支持零代码微调多种语言模型,生成合成数据,团队协作开发,自动部署。帮助用户快速构建高质量的 AI 模型。
385 7
Kiln AI:零代码实现微调模型!自动生成合成数据与微调模型的开源平台
|
7天前
|
人工智能 数据可视化 搜索推荐
免费+数据安全!手把手教你在PC跑DeepSeek-R1大模型,小白也能秒变AI大神!
本地部署AI模型(如DeepSeek R1)保障数据隐私、节省成本且易于控制,通过Ollama平台便捷安装与运行,结合可视化工具(如Chatbox)及Python代码调用,实现高效、个性化的AI应用开发与使用。
99 3
免费+数据安全!手把手教你在PC跑DeepSeek-R1大模型,小白也能秒变AI大神!
|
7天前
|
人工智能 Linux iOS开发
exo:22.1K Star!一个能让任何人利用日常设备构建AI集群的强大工具,组成一个虚拟GPU在多台设备上并行运行模型
exo 是一款由 exo labs 维护的开源项目,能够让你利用家中的日常设备(如 iPhone、iPad、Android、Mac 和 Linux)构建强大的 AI 集群,支持多种大模型和分布式推理。
237 100
|
8天前
|
人工智能 Java 语音技术
【最佳实践系列】零基础上手百炼语音AI模型
阿里云百炼语音AI服务提供了丰富的功能,包括语音识别、语音合成、实时翻译等。通过`alibabacloud-bailian-speech-demo`项目,可以一键调用这些服务,体验语音及大模型的魅力,降低接入门槛。该项目支持Python和Java,涵盖从简单的一句话合成到复杂的同声传译等多个示例,助力开发者快速上手并进行二次开发。
|
8天前
|
人工智能 关系型数据库 分布式数据库
PolarDB 开源基础教程系列 7.4 应用实践之 AI大模型外脑
PolarDB向量数据库插件通过实现通义大模型AI的外脑,解决了通用大模型无法触达私有知识库和产生幻觉的问题。该插件允许用户将新发现的知识和未训练的私有知识分段并转换为向量,存储在向量数据库中,并创建索引以加速相似搜索。当用户提问时,系统将问题向量化并与数据库中的向量进行匹配,找到最相似的内容发送给大模型,从而提高回答的准确性和相关性。此外,PolarDB支持多种编程语言接口,如Python,使数据库具备内置AI能力,极大提升了数据处理和分析的效率。
33 4
|
8天前
|
机器学习/深度学习 人工智能 编解码
Lumina-Image 2.0:上海 AI Lab 开源的统一图像生成模型,支持生成多分辨率、多风格的图像
Lumina-Image 2.0 是上海 AI Lab 开源的高效统一图像生成模型,参数量为26亿,基于扩散模型和Transformer架构,支持多种推理求解器,能生成高质量、多风格的图像。
119 17
Lumina-Image 2.0:上海 AI Lab 开源的统一图像生成模型,支持生成多分辨率、多风格的图像

热门文章

最新文章