通过MATLAB分别对比二进制编码遗传优化算法和实数编码遗传优化算法

简介: 摘要:使用MATLAB2022a对比了二进制编码与实数编码的遗传优化算法,关注最优适应度、平均适应度及运算效率。二进制编码适用于离散问题,解表示为二进制串;实数编码适用于连续问题,直接搜索连续空间。两种编码在初始化、适应度评估、选择、交叉和变异步骤类似,但实数编码可能需更复杂策略避免局部最优。选择编码方式取决于问题特性。

1.程序功能描述
通过MATLAB分别对比二进制编码遗传优化算法和实数编码遗传优化算法,对比最优适应度值,平均适应度值以及算法运算效率。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
1.jpeg
2.jpeg
3.jpeg

3.核心程序

Popu    = 6*rand(NUM,dim)-3;
%初始化最优适应度值
Vbest   =-inf;
for i=1:NUM%计算适应度值
    y(i)=fitness(Popu(i,:));
    if y(i)>Vbest
Vbest=y(i);
Vopt=Popu(i,:);
    end
end
%迭代
for t=1:Maxiter
    t
    %选择
    p = y/sum(y);
    q = cumsum(p);
    %选择个体索引
    for i=1:NUM
        temp       = rand(1);
idx        = find(q>=temp);
Popus(i,:) = Popu(idx(1),:);
    end
    %交叉
    for i=1:NUM
        if rand(1)<pc
            i1=randi([1,NUM]);
            i2=randi([1,NUM]);
            while i1==i2
                i1=randi([1,NUM]);
                i2=randi([1,NUM]);
            end
            k                 = randi([1,dim]);
            temp              = Popus(i1,k+1:end);
Popus(i1,k+1:end) = Popus(i2,k+1:end);
Popus(i2,k+1:end) = temp;
        end
    end
    %变异
    Pm0   = rand(NUM,dim);
Popus = (Pm0>=pm).*Popus + (Pm0<pm).*Pm0;
    %更新
    .....................................................
end
figure
plot(1:Maxiter,Vsave0)
hold on
plot(1:Maxiter,Vsave1)
legend('最优适应度','平均适应度')
xlabel('迭代次数')
ylabel('适应度值')
t=toc 
save R1.mat 
0003

4.本算法原理
遗传算法是一种基于生物进化原理的优化算法,广泛应用于各种问题,如函数优化、机器学习、图像处理等。在遗传算法中,编码方式是关键的一步,因为它决定了问题的表示方式以及算法的搜索空间。主要有两种编码方式:二进制编码和实数编码。

4.1二进制编码遗传优化算法

   二进制编码遗传优化算法是一种常见的遗传算法,它将问题的解表示为二进制字符串。在二进制编码中,每个解的每个基因都被编码为一个0或1的二进制数。这种编码方式在许多问题中都很有效,因为它可以很容易地表示离散解空间。

  二进制编码遗传优化算法的基本步骤:

   初始化:随机生成一组二进制字符串作为初始种群。每个字符串的长度等于问题中决策变量的数量。

   适应度评估:计算每个字符串的适应度值,适应度值是根据问题的目标函数来计算的。

   选择:根据适应度值选择哪些字符串进入下一代。通常使用轮盘赌选择法或锦标赛选择法等。

   交叉(重组):随机选择两个字符串,进行交叉操作,产生新的字符串。交叉操作是通过交换两个字符串的部分基因来完成的。

   变异:随机选择一些字符串,对它们的基因进行变异操作,以增加种群的多样性。变异操作是通过随机改变一个基因的值来实现的。

   终止条件:当达到预设的迭代次数或找到满足要求的解时,算法终止。

4.2实数编码遗传优化算法

   实数编码遗传优化算法将问题的解表示为实数字符串。在实数编码中,每个解的每个基因都被编码为一个实数值。这种编码方式在连续问题或具有连续决策变量的混合离散问题中很常见。

以下是实数编码遗传优化算法的基本步骤:

   初始化:随机生成一组实数字符串作为初始种群。每个字符串的长度等于问题中决策变量的数量。

   适应度评估:计算每个字符串的适应度值,适应度值是根据问题的目标函数来计算的。

   选择:根据适应度值选择哪些字符串进入下一代。通常使用轮盘赌选择法或锦标赛选择法等。

   交叉(重组):随机选择两个字符串,进行交叉操作,产生新的字符串。交叉操作是通过线性组合两个字符串的基因来完成的。

   变异:随机选择一些字符串,对它们的基因进行变异操作,以增加种群的多样性。变异操作是通过随机改变一个基因的值来实现的。

   终止条件:当达到预设的迭代次数或找到满足要求的解时,算法终止。

   二进制编码和实数编码的主要区别在于问题的表示方式不同。二进制编码适用于离散问题,而实数编码适用于连续问题或具有连续决策变量的混合离散问题。此外,由于实数编码使用了实数表示解,因此可以直接对连续空间进行搜索,而二进制编码只能通过离散的搜索空间进行搜索。然而,由于实数编码的搜索空间是连续的,因此可能需要更复杂的搜索策略来找到全局最优解,因为初始种群可能陷入局部最优解中。在某些问题中,实数编码可能比二进制编码更有效,但在其他问题中,二进制编码可能更有效。选择哪种编码方式取决于问题的具体性质和要求。
相关文章
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
270 0
|
3月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
226 3
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
178 8
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
188 8
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
2月前
|
机器学习/深度学习 算法
采用蚁群算法对BP神经网络进行优化
使用蚁群算法来优化BP神经网络的权重和偏置,克服传统BP算法容易陷入局部极小值、收敛速度慢、对初始权重敏感等问题。
328 5
|
2月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
3月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
244 2
|
3月前
|
canal 算法 vr&ar
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
142 1