Dask是一个用于并行计算的Python库,它提供了类似于Pandas和NumPy的API,但能够在大型数据集上进行并行计算。

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
性能测试 PTS,5000VUM额度
云原生网关 MSE Higress,422元/月
简介: Dask是一个用于并行计算的Python库,它提供了类似于Pandas和NumPy的API,但能够在大型数据集上进行并行计算。

一、Dask模块简介

Dask是一个用于并行计算的Python库,它提供了类似于Pandas和NumPy的API,但能够在大型数据集上进行并行计算。Dask的核心思想是将数据划分为多个块(chunks),并在多个计算核心上并行处理这些块。这使得Dask能够处理比Pandas或NumPy更大的数据集,同时保持类似的编程接口。

Dask支持多种数据结构和计算方式,包括数组(Array)、数据框(DataFrame)、序列(Series)和延迟计算(delayed)。在本文中,我们将重点关注DataFrame和延迟计算(delayed)。

二、DataFrame使用示例

1. 导入必要的库

首先,我们需要导入Dask和Pandas库。虽然Dask提供了类似于Pandas的API,但有时候我们仍然需要直接使用Pandas来处理一些较小的数据集或进行某些特定的操作。

import dask.dataframe as dd
import pandas as pd

2. 创建Dask DataFrame

Dask DataFrame可以从多种来源创建,包括CSV文件、Parquet文件、HDFS、SQL数据库等。以下是一个从CSV文件创建Dask DataFrame的示例:

# 假设我们有一个名为'large_file.csv'的CSV文件,它太大而无法一次性加载到内存中
df = dd.read_csv('large_file.csv')

# Dask DataFrame是一个惰性对象,它不会立即加载数据。相反,它会在你执行计算时加载数据
# 你可以通过调用.compute()方法来触发计算并获取结果
result = df.head().compute()  # 获取前几行数据并触发计算
print(result)

3. Dask DataFrame操作

Dask DataFrame提供了与Pandas类似的API,因此你可以使用类似的方法来操作数据。以下是一些示例:

  • 选择列:df['column_name']
  • 过滤行:df[df['column_name'] > value]
  • 分组聚合:df.groupby('column_name').sum()
  • 排序:df.sort_values('column_name')
  • 连接:dd.merge(df1, df2, on='key')

这些操作都是惰性的,它们不会立即执行。相反,它们会创建一个新的Dask DataFrame,该DataFrame表示要执行的计算。要获取实际结果,你需要调用.compute()方法。

三、Delayed使用示例

Delayed是Dask提供的一种更通用的并行计算方式。它允许你定义任意Python函数作为任务,并将这些任务组合成一个有向无环图(DAG),然后并行执行这些任务。

1. 定义任务

首先,你需要定义要并行执行的任务。这些任务可以是任何Python函数。以下是一个简单的示例:

import dask

def inc(x):
    return x + 1

def double(x):
    return x * 2

# 使用dask.delayed装饰器将函数转换为延迟任务
inc_delayed = dask.delayed(inc)
double_delayed = dask.delayed(double)

2. 组合任务

接下来,你可以将延迟任务组合成一个有向无环图(DAG)。在这个图中,每个节点表示一个任务,每个边表示一个依赖关系。以下是一个示例:

# 创建一个值
x = 1

# 创建任务并组合它们
y = inc_delayed(x)
z = double_delayed(y)

# z现在是一个延迟对象,它表示要执行的计算(即(1+1)*2)
# 要获取实际结果,你需要调用.compute()方法
result = z.compute()
print(result)  # 输出:4

在这个示例中,我们首先定义了两个简单的函数incdouble,并使用dask.delayed装饰器将它们转换为延迟任务。然后,我们创建了一个值x,并使用延迟任务来组合计算(1+1)*2。最后,我们调用.compute()方法来触发计算并获取结果。

3. 并行执行

虽然上面的示例只涉及一个计算任务,但Delayed可以处理更复杂的计算图,并在多个计算核心上并行执行这些任务。以下是一个更复杂的示例:

```python
import dask.array as da

创建一个大的随机数组

x = da.random.normal(0, 1, size=(10000, 10000), chunks=(1
处理结果:

一、Dask模块简介

Dask是一个用于并行计算的Python库,它提供了类似于Pandas和NumPy的API,但能够在大型数据集上进行并行计算。Dask的核心思想是将数据划分为多个块(chunks),并在多个计算核心上并行处理这些块。这使得Dask能够处理比Pandas或NumPy更大的数据集,同时保持类似的编程接口。
Dask支持多种数据结构和计算方式,包括数组(Array)、数据框(DataFrame)、序列(Series)和延迟计算(delayed)。在本文中,我们将重点关注DataFrame和延迟计算(delayed)。

二、DataFrame使用示例

1. 导入必要的库

首先,我们需要导入Dask和Pandas库。虽然Dask提供了类似于Pandas的API,但有时候我们仍然需要直接使用Pandas来处理一些较小的数据集或进行某些特定的操作。
python Dask DataFrame可以从多种来源创建,包括CSV文件、Parquet文件、HDFS、SQL数据库等。以下是一个从CSV文件创建Dask DataFrame的示例:python

Dask DataFrame是一个惰性对象,它不会立即加载数据。相反,它会在你执行计算时加载数据

Dask DataFrame提供了与Pandas类似的API,因此你可以使用类似的方法来操作数据。以下是一些示例:

  • 选择列:df['column_name']
    这些操作都是惰性的,它们不会立即执行。相反,它们会创建一个新的Dask DataFrame,该DataFrame表示要执行的计算。要获取实际结果,你需要调用.compute()方法。

    三、Delayed使用示例

    Delayed是Dask提供的一种更通用的并行计算方式。它允许你定义任意Python函数作为任务,并将这些任务组合成一个有向无环图(DAG),然后并行执行这些任务。

    1. 定义任务

    首先,你需要定义要并行执行的任务。这些任务可以是任何Python函数。以下是一个简单的示例:
    ```python
    def inc(x)
    return x + 1
    def double(x)

    return x * 2

    使用dask.delayed装饰器将函数转换为延迟任务

    接下来,你可以将延迟任务组合成一个有向无环图(DAG)。在这个图中,每个节点表示一个任务,每个边表示一个依赖关系。以下是一个示例:
    ```python

    创建任务并组合它们

    z现在是一个延迟对象,它表示要执行的计算(即(1+1)*2)

    3. 并行执行

    虽然上面的示例只涉及一个计算任务,但Delayed可以处理更复杂的计算图,并在多个计算核心上并行执行这些任务。以下是一个更复杂的示例:
    ```python

    创建一个大的随机数组

相关文章
|
8天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
29 0
|
2天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
10 2
|
7天前
|
Python
通过Pandas库处理股票收盘价数据,识别最近一次死叉后未出现金叉的具体位置的方法
在金融分析领域,"死叉"指的是短期移动平均线(如MA5)下穿长期移动平均线(如MA10),而"金叉"则相反。本文介绍了一种利用Python编程语言,通过Pandas库处理股票收盘价数据,识别最近一次死叉后未出现金叉的具体位置的方法。该方法首先计算两种移动平均线,接着确定它们的交叉点,最后检查并输出最近一次死叉及其后是否形成了金叉。此技术广泛应用于股市趋势分析。
20 2
|
8天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
18 3
|
10天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
29 5
|
8天前
|
Python
如何利用Pandas库找到最近一次死叉后未出现金叉的具体位置
在金融分析领域,"死叉"指短期移动平均线跌破长期移动平均线,而"金叉"则相反。本文介绍了一个Python示例,演示如何利用Pandas库找到最近一次死叉后未出现金叉的具体位置,包括计算移动平均线、确定交叉点、识别死叉和金叉,以及输出相关分析结果。此方法适用于各类包含收盘价数据的金融分析场景。
17 1
|
9天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
28 2
|
9天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
20 1
|
9天前
|
供应链 数据挖掘 API
电商API接口介绍——sku接口概述
商品SKU(Stock Keeping Unit)接口是电商API接口中的一种,专门用于获取商品的SKU信息。SKU是库存量单位,用于区分同一商品的不同规格、颜色、尺寸等属性。通过商品SKU接口,开发者可以获取商品的SKU列表、SKU属性、库存数量等详细信息。
|
10天前
|
JSON API 数据格式
店铺所有商品列表接口json数据格式示例(API接口)
当然,以下是一个示例的JSON数据格式,用于表示一个店铺所有商品列表的API接口响应