Dask是一个用于并行计算的Python库,它提供了类似于Pandas和NumPy的API,但能够在大型数据集上进行并行计算。

简介: Dask是一个用于并行计算的Python库,它提供了类似于Pandas和NumPy的API,但能够在大型数据集上进行并行计算。

一、Dask模块简介

Dask是一个用于并行计算的Python库,它提供了类似于Pandas和NumPy的API,但能够在大型数据集上进行并行计算。Dask的核心思想是将数据划分为多个块(chunks),并在多个计算核心上并行处理这些块。这使得Dask能够处理比Pandas或NumPy更大的数据集,同时保持类似的编程接口。

Dask支持多种数据结构和计算方式,包括数组(Array)、数据框(DataFrame)、序列(Series)和延迟计算(delayed)。在本文中,我们将重点关注DataFrame和延迟计算(delayed)。

二、DataFrame使用示例

1. 导入必要的库

首先,我们需要导入Dask和Pandas库。虽然Dask提供了类似于Pandas的API,但有时候我们仍然需要直接使用Pandas来处理一些较小的数据集或进行某些特定的操作。

import dask.dataframe as dd
import pandas as pd

2. 创建Dask DataFrame

Dask DataFrame可以从多种来源创建,包括CSV文件、Parquet文件、HDFS、SQL数据库等。以下是一个从CSV文件创建Dask DataFrame的示例:

# 假设我们有一个名为'large_file.csv'的CSV文件,它太大而无法一次性加载到内存中
df = dd.read_csv('large_file.csv')

# Dask DataFrame是一个惰性对象,它不会立即加载数据。相反,它会在你执行计算时加载数据
# 你可以通过调用.compute()方法来触发计算并获取结果
result = df.head().compute()  # 获取前几行数据并触发计算
print(result)

3. Dask DataFrame操作

Dask DataFrame提供了与Pandas类似的API,因此你可以使用类似的方法来操作数据。以下是一些示例:

  • 选择列:df['column_name']
  • 过滤行:df[df['column_name'] > value]
  • 分组聚合:df.groupby('column_name').sum()
  • 排序:df.sort_values('column_name')
  • 连接:dd.merge(df1, df2, on='key')

这些操作都是惰性的,它们不会立即执行。相反,它们会创建一个新的Dask DataFrame,该DataFrame表示要执行的计算。要获取实际结果,你需要调用.compute()方法。

三、Delayed使用示例

Delayed是Dask提供的一种更通用的并行计算方式。它允许你定义任意Python函数作为任务,并将这些任务组合成一个有向无环图(DAG),然后并行执行这些任务。

1. 定义任务

首先,你需要定义要并行执行的任务。这些任务可以是任何Python函数。以下是一个简单的示例:

import dask

def inc(x):
    return x + 1

def double(x):
    return x * 2

# 使用dask.delayed装饰器将函数转换为延迟任务
inc_delayed = dask.delayed(inc)
double_delayed = dask.delayed(double)

2. 组合任务

接下来,你可以将延迟任务组合成一个有向无环图(DAG)。在这个图中,每个节点表示一个任务,每个边表示一个依赖关系。以下是一个示例:

# 创建一个值
x = 1

# 创建任务并组合它们
y = inc_delayed(x)
z = double_delayed(y)

# z现在是一个延迟对象,它表示要执行的计算(即(1+1)*2)
# 要获取实际结果,你需要调用.compute()方法
result = z.compute()
print(result)  # 输出:4

在这个示例中,我们首先定义了两个简单的函数incdouble,并使用dask.delayed装饰器将它们转换为延迟任务。然后,我们创建了一个值x,并使用延迟任务来组合计算(1+1)*2。最后,我们调用.compute()方法来触发计算并获取结果。

3. 并行执行

虽然上面的示例只涉及一个计算任务,但Delayed可以处理更复杂的计算图,并在多个计算核心上并行执行这些任务。以下是一个更复杂的示例:

```python
import dask.array as da

创建一个大的随机数组

x = da.random.normal(0, 1, size=(10000, 10000), chunks=(1
处理结果:

一、Dask模块简介

Dask是一个用于并行计算的Python库,它提供了类似于Pandas和NumPy的API,但能够在大型数据集上进行并行计算。Dask的核心思想是将数据划分为多个块(chunks),并在多个计算核心上并行处理这些块。这使得Dask能够处理比Pandas或NumPy更大的数据集,同时保持类似的编程接口。
Dask支持多种数据结构和计算方式,包括数组(Array)、数据框(DataFrame)、序列(Series)和延迟计算(delayed)。在本文中,我们将重点关注DataFrame和延迟计算(delayed)。

二、DataFrame使用示例

1. 导入必要的库

首先,我们需要导入Dask和Pandas库。虽然Dask提供了类似于Pandas的API,但有时候我们仍然需要直接使用Pandas来处理一些较小的数据集或进行某些特定的操作。
python Dask DataFrame可以从多种来源创建,包括CSV文件、Parquet文件、HDFS、SQL数据库等。以下是一个从CSV文件创建Dask DataFrame的示例:python

Dask DataFrame是一个惰性对象,它不会立即加载数据。相反,它会在你执行计算时加载数据

Dask DataFrame提供了与Pandas类似的API,因此你可以使用类似的方法来操作数据。以下是一些示例:

  • 选择列:df['column_name']
    这些操作都是惰性的,它们不会立即执行。相反,它们会创建一个新的Dask DataFrame,该DataFrame表示要执行的计算。要获取实际结果,你需要调用.compute()方法。

    三、Delayed使用示例

    Delayed是Dask提供的一种更通用的并行计算方式。它允许你定义任意Python函数作为任务,并将这些任务组合成一个有向无环图(DAG),然后并行执行这些任务。

    1. 定义任务

    首先,你需要定义要并行执行的任务。这些任务可以是任何Python函数。以下是一个简单的示例:
    ```python
    def inc(x)
    return x + 1
    def double(x)

    return x * 2

    使用dask.delayed装饰器将函数转换为延迟任务

    接下来,你可以将延迟任务组合成一个有向无环图(DAG)。在这个图中,每个节点表示一个任务,每个边表示一个依赖关系。以下是一个示例:
    ```python

    创建任务并组合它们

    z现在是一个延迟对象,它表示要执行的计算(即(1+1)*2)

    3. 并行执行

    虽然上面的示例只涉及一个计算任务,但Delayed可以处理更复杂的计算图,并在多个计算核心上并行执行这些任务。以下是一个更复杂的示例:
    ```python

    创建一个大的随机数组

相关文章
|
4月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
391 0
|
4月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
584 0
|
4月前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
4月前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
5月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
457 0
|
4月前
|
数据可视化 关系型数据库 MySQL
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
本文详解基于Python的电影TOP250数据可视化大屏开发全流程,涵盖爬虫、数据存储、分析及可视化。使用requests+BeautifulSoup爬取数据,pandas存入MySQL,pyecharts实现柱状图、饼图、词云图、散点图等多种图表,并通过Page组件拖拽布局组合成大屏,支持多种主题切换,附完整源码与视频讲解。
424 4
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
|
4月前
|
传感器 运维 前端开发
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
445 10
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
|
4月前
|
Ubuntu API C++
C++标准库、Windows API及Ubuntu API的综合应用
总之,C++标准库、Windows API和Ubuntu API的综合应用是一项挑战性较大的任务,需要开发者具备跨平台编程的深入知识和丰富经验。通过合理的架构设计和有效的工具选择,可以在不同的操作系统平台上高效地开发和部署应用程序。
213 11
|
4月前
|
Cloud Native 算法 API
Python API接口实战指南:从入门到精通
🌟蒋星熠Jaxonic,技术宇宙的星际旅人。深耕API开发,以Python为舟,探索RESTful、GraphQL等接口奥秘。擅长requests、aiohttp实战,专注性能优化与架构设计,用代码连接万物,谱写极客诗篇。
Python API接口实战指南:从入门到精通
|
5月前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南

推荐镜像

更多