Prometheus+Grafana 部署

本文涉及的产品
可观测可视化 Grafana 版,10个用户账号 1个月
可观测监控 Prometheus 版,每月50GB免费额度
简介: Prometheus 和 Grafana 组成监控解决方案。Prometheus 是开源系统监控工具,Grafana 则用于数据可视化。要连接 Prometheus 数据源,登录 Grafana,点击设置,选择“连接”,添加新数据源,选择 Prometheus 类型,并填入 Prometheus 服务器的 HTTP 地址,如 `http://192.168.1.1:9090`,验证连接。之后,从 Grafana 官方仪表板库导入监控面板,如主机监控模板,以可视化系统状态。完成这些步骤后,便建立了有效的监控系统。

简介

Prometheus 和 Grafana 是一对常用于监控和可视化的工具。Prometheus 是一个开源的系统监控和警报工具,而 Grafana 是一个开源的数据可视化和监控平台。

添加数据源

登录后,点击左侧菜单栏的齿轮图标,选择 "连接"。

点击 "添加新连接" 或 "数据源"。

选择 Prometheus 作为数据源类型。

在 HTTP 部分配置 Prometheus 的地址,如:http://192.168.1.1:9090,然后点击 "Save & Test" 验证连接是否成功。

导入仪表盘

在左侧菜单栏中选择 "+",然后选择 "导入仪表盘"。

grafana.com/dashboards查找并导入常见应用程序的仪表板,官网(很多,不断优化、迭代中)。

比如:主机基础监控(cpu,内存,磁盘,网络),导入仪表板模板:仪表板 ID 或 下载 JSON。

至此,Prometheus+Grafana 部署成功。

相关实践学习
通过可观测可视化Grafana版进行数据可视化展示与分析
使用可观测可视化Grafana版进行数据可视化展示与分析。
目录
相关文章
|
19天前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第26天】Prometheus与Grafana是智能运维中的强大组合,前者是开源的系统监控和警报工具,后者是数据可视化平台。Prometheus具备时间序列数据库、多维数据模型、PromQL查询语言等特性,而Grafana支持多数据源、丰富的可视化选项和告警功能。两者结合可实现实时监控、灵活告警和高度定制化的仪表板,广泛应用于服务器、应用和数据库的监控。
102 3
|
1月前
|
Prometheus Kubernetes 监控
k8s部署针对外部服务器的prometheus服务
通过上述步骤,您不仅成功地在Kubernetes集群内部署了Prometheus,还实现了对集群外服务器的有效监控。理解并实施网络配置是关键,确保监控数据的准确无误传输。随着监控需求的增长,您还可以进一步探索Prometheus生态中的其他组件,如Alertmanager、Grafana等,以构建完整的监控与报警体系。
121 60
|
1月前
|
Prometheus Kubernetes 监控
k8s部署针对外部服务器的prometheus服务
通过上述步骤,您不仅成功地在Kubernetes集群内部署了Prometheus,还实现了对集群外服务器的有效监控。理解并实施网络配置是关键,确保监控数据的准确无误传输。随着监控需求的增长,您还可以进一步探索Prometheus生态中的其他组件,如Alertmanager、Grafana等,以构建完整的监控与报警体系。
210 62
|
21天前
|
Prometheus 监控 Cloud Native
基于Docker安装Grafana和Prometheus
Grafana 是一款用 Go 语言开发的开源数据可视化工具,支持数据监控和统计,并具备告警功能。通过 Docker 部署 Grafana 和 Prometheus,可实现系统数据的采集、展示和告警。默认登录用户名和密码均为 admin。配置 Prometheus 数据源后,可导入主机监控模板(ID 8919)进行数据展示。
54 2
|
1月前
|
自然语言处理 PyTorch 算法框架/工具
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
【10月更文挑战第1天】随着深度学习技术的进步,预训练模型已成为自然语言处理(NLP)领域的常见实践。这些模型通过大规模数据集训练获得通用语言表示,但需进一步微调以适应特定任务。本文通过简化流程和示例代码,介绍了如何选择预训练模型(如BERT),并利用Python库(如Transformers和PyTorch)进行微调。文章详细说明了数据准备、模型初始化、损失函数定义及训练循环等关键步骤,并提供了评估模型性能的方法。希望本文能帮助读者更好地理解和实现模型微调。
69 2
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
|
18天前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第27天】在智能运维中,Prometheus和Grafana的组合已成为监控和告警体系的事实标准。Prometheus负责数据收集和存储,支持灵活的查询语言PromQL;Grafana提供数据的可视化展示和告警功能。本文介绍如何配置Prometheus监控目标、Grafana数据源及告警规则,帮助运维团队实时监控系统状态,确保稳定性和可靠性。
87 0
|
3月前
|
Prometheus 监控 Cloud Native
自定义grafana_table(数据源Prometheus)
综上所述,自定义 Grafana 表格并将 Prometheus 作为数据源的关键是理解 PromQL 的查询机制、熟悉 Grafana 面板的配置选项,并利用 Grafana 强大的转换和自定义功能使数据展示更为直观和有洞见性。随着对这些工具更深入的了解,您将可以创建出更高级的监控仪表盘,以支持复杂的业务监控需求。
283 1
|
3月前
|
Prometheus 监控 Cloud Native
prometheus学习笔记之Grafana安装与配置
prometheus学习笔记之Grafana安装与配置
|
3月前
|
Prometheus 监控 Cloud Native
【监控】prometheus传统环境监控告警常用配置
【监控】prometheus传统环境监控告警常用配置
【监控】prometheus传统环境监控告警常用配置
|
10天前
|
Prometheus 监控 Cloud Native
在 HBase 集群中,Prometheus 通常监控哪些类型的性能指标?
在 HBase 集群中,Prometheus 监控关注的核心指标包括 Master 和 RegionServer 的进程存在性、RPC 请求数、JVM 内存使用率、磁盘和网络错误、延迟和吞吐量、资源利用率及 JVM 使用信息。通过 Grafana 可视化和告警规则,帮助管理员实时监控集群性能和健康状况。