Keras是一个高层神经网络API,由Python编写,并能够在TensorFlow、Theano或CNTK之上运行。Keras的设计初衷是支持快速实验,能够用最少的代码实现想法,并且能够方便地在CPU和GPU上运行。

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
函数计算FC,每月15万CU 3个月
可观测可视化 Grafana 版,10个用户账号 1个月
简介: Keras是一个高层神经网络API,由Python编写,并能够在TensorFlow、Theano或CNTK之上运行。Keras的设计初衷是支持快速实验,能够用最少的代码实现想法,并且能够方便地在CPU和GPU上运行。

1. Keras框架概述

Keras是一个高层神经网络API,由Python编写,并能够在TensorFlow、Theano或CNTK之上运行。Keras的设计初衷是支持快速实验,能够用最少的代码实现想法,并且能够方便地在CPU和GPU上运行。

2. Sequential()模型

在Keras中,Sequential模型是一个线性堆叠的层(layer)的容器。你可以通过向Sequential模型传递一个层列表来构造该模型。

3. Dense()

Dense层,即全连接层,是神经网络中最常见的层类型。在Keras中,你可以通过指定该层的输出单元数(即神经元数量)、激活函数(如ReLU、sigmoid等)以及是否使用正则化等参数来定义Dense层。

4. fit()方法

fit()方法是用于训练神经网络的。你需要向它传递训练数据(通常是一个NumPy数组或类似的数据结构)、标签(即目标输出)、训练周期数(epochs)、批次大小(batch_size)以及其他一些可选参数(如验证集、优化器、损失函数等)。

5. 图像分类任务代码示例及解释

5.1 导入必要的库

import keras
from keras.models import Sequential
from keras.layers import Dense, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import to_categorical
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator

import numpy as np
AI 代码解读

5.2 加载数据

这里我们使用CIFAR-10数据集作为示例,它是一个包含10个类别的60000个32x32彩色图像的数据集。

# 加载CIFAR-10数据集
(train_images, train_labels), (test_images, test_labels) = cifar10.load_data()

# 将标签转换为one-hot编码
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

# 归一化像素值到0-1之间
train_images, test_images = train_images / 255.0, test_images / 255.0
AI 代码解读

5.3 构建模型

我们将构建一个包含两个卷积层、两个最大池化层和两个全连接层的卷积神经网络(CNN)。

# 构建Sequential模型
model = Sequential()

# 添加第一个卷积层,使用32个3x3的卷积核,激活函数为ReLU
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))

# 添加第一个最大池化层,池化窗口为2x2
model.add(MaxPooling2D(pool_size=(2, 2)))

# 添加第二个卷积层,使用64个3x3的卷积核
model.add(Conv2D(64, (3, 3), activation='relu'))

# 添加第二个最大池化层
model.add(MaxPooling2D(pool_size=(2, 2)))

# 将特征图展平为一维向量,以便输入到全连接层
model.add(Flatten())

# 添加第一个全连接层(Dense层),有64个神经元
model.add(Dense(64, activation='relu'))

# 添加输出层,有10个神经元(对应10个类别),使用softmax激活函数
model.add(Dense(10, activation='softmax'))
AI 代码解读

5.4 编译模型

在训练模型之前,我们需要配置学习过程,这可以通过compile()方法完成。我们将使用交叉熵损失函数(适合多分类问题)、Adam优化器以及准确率作为评估指标。

# 编译模型
model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=keras.optimizers.Adam(),
              metrics=['accuracy'])
AI 代码解读

5.5 数据增强

为了提高模型的泛化能力,我们可以使用数据增强
处理结果:

1. Keras框架概述

Keras是一个高层神经网络API,由Python编写,并能够在TensorFlow、Theano或CNTK之上运行。Keras的设计初衷是支持快速实验,能够用最少的代码实现想法,并且能够方便地在CPU和GPU上运行。

2. Sequential()模型

在Keras中,Sequential模型是一个线性堆叠的层(layer)的容器。你可以通过向Sequential模型传递一个层列表来构造该模型。

3. Dense()

Dense层,即全连接层,是神经网络中最常见的层类型。在Keras中,你可以通过指定该层的输出单元数(即神经元数量)、激活函数(如ReLU、sigmoid等)以及是否使用正则化等参数来定义Dense层。

4. fit()方法

fit()方法是用于训练神经网络的。你需要向它传递训练数据(通常是一个NumPy数组或类似的数据结构)、标签(即目标输出)、训练周期数(epochs)、批次大小(batch_size)以及其他一些可选参数(如验证集、优化器、损失函数等)。

5. 图像分类任务代码示例及解释

5.1 导入必要的库

python import numpy as np 这里我们使用CIFAR-10数据集作为示例,它是一个包含10个类别的60000个32x32彩色图像的数据集。python

将标签转换为one-hot编码

归一化像素值到0-1之间

我们将构建一个包含两个卷积层、两个最大池化层和两个全连接层的卷积神经网络(CNN)。
```python

添加第一个卷积层,使用32个3x3的卷积核,激活函数为ReLU

添加第一个最大池化层,池化窗口为2x2

添加第二个卷积层,使用64个3x3的卷积核

添加第二个最大池化层

将特征图展平为一维向量,以便输入到全连接层

添加第一个全连接层(Dense层),有64个神经元

添加输出层,有10个神经元(对应10个类别),使用softmax激活函数

在训练模型之前,我们需要配置学习过程,这可以通过compile()方法完成。我们将使用交叉熵损失函数(适合多分类问题)、Adam优化器以及准确率作为评估指标。
```python
optimizer=keras.optimizers.Adam(),
metrics=['accuracy'])
为了提高模型的泛化能力,我们可以使用数据增强

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
打赏
0
0
0
0
88
分享
相关文章
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
实战指南:通过1688开放平台API获取商品详情数据(附Python代码及避坑指南)
1688作为国内最大的B2B供应链平台,其API为企业提供合法合规的JSON数据源,直接获取批发价、SKU库存等核心数据。相比爬虫方案,官方API避免了反爬严格、数据缺失和法律风险等问题。企业接入1688商品API需完成资质认证、创建应用、签名机制解析及调用接口四步。应用场景包括智能采购系统、供应商评估模型和跨境选品分析。提供高频问题解决方案及安全合规实践,确保数据安全与合法使用。立即访问1688开放平台,解锁B2B数据宝藏!
【Azure Developer】编写Python SDK代码实现从China Azure中VM Disk中创建磁盘快照Snapshot
本文介绍如何使用Python SDK为中国区微软云(China Azure)中的虚拟机磁盘创建快照。通过Azure Python SDK的Snapshot Class,指定`location`和`creation_data`参数,使用`Copy`选项从现有磁盘创建快照。代码示例展示了如何配置Default Azure Credential,并设置特定于中国区Azure的`base_url`和`credential_scopes`。参考资料包括官方文档和相关API说明。
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
120 9
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
106 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
目前我们看到有很多使用KAN替代MLP的实验,但是目前来说对于图神经网络来说还没有类似的实验,今天我们就来使用KAN创建一个图神经网络Graph Kolmogorov Arnold(GKAN),来测试下KAN是否可以在图神经网络方面有所作为。
257 1
【Tensorflow+keras】用代码给神经网络结构绘图
文章提供了使用TensorFlow和Keras来绘制神经网络结构图的方法,并给出了具体的代码示例。
102 0
【传知代码】图神经网络长对话理解-论文复现
在ACL2023会议上发表的论文《使用带有辅助跨模态交互的关系时态图神经网络进行对话理解》提出了一种新方法,名为correct,用于多模态情感识别。correct框架通过全局和局部上下文信息捕捉对话情感,同时有效处理跨模态交互和时间依赖。模型利用图神经网络结构,通过构建图来表示对话中的交互和时间关系,提高了情感预测的准确性。在IEMOCAP和CMU-MOSEI数据集上的实验结果证明了correct的有效性。源码和更多细节可在文章链接提供的附件中获取。
131 4
【传知代码】图神经网络长对话理解-论文复现

云原生

+关注
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等