我们来看一个简单的Python代码示例,它使用`joblib`模块来并行执行一个函数:

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 我们来看一个简单的Python代码示例,它使用`joblib`模块来并行执行一个函数:

Python代码示例

首先,我们来看一个简单的Python代码示例,它使用joblib模块来并行执行一个函数:

from joblib import Parallel, delayed
import numpy as np

# 定义一个简单的函数,用于计算平方
def square(x):
    return x ** 2

# 创建一个数字列表
numbers = np.arange(1000000)

# 使用Parallel和delayed来并行计算平方
if __name__ == '__main__':
    with Parallel(n_jobs=-1) as parallel:
        results = parallel(delayed(square)(i) for i in numbers)

# 打印结果的前几个元素(实际上,由于结果很长,我们通常不会全部打印)
print(results[:5])
AI 代码解读

解释

1. 并行编程概念

并行编程是一种编程范式,它允许程序的不同部分同时执行,从而加快计算速度。这通常通过多线程、多进程或分布式计算来实现。在Python中,由于全局解释器锁(GIL)的存在,多线程并不总是能带来性能提升,因此多进程和分布式计算更为常见。

2. joblib模块

joblib是一个Python库,用于轻松地对Python函数进行并行处理。它特别适用于数值计算任务,如科学计算和机器学习。joblib提供了Paralleldelayed函数,使并行化变得简单。

  • Parallel(n_jobs=...): 创建一个并行计算的上下文管理器。n_jobs参数指定了要使用的进程数。如果设置为-1,则使用所有可用的CPU核心。
  • delayed(func)(...): 这是一个函数修饰符,用于“延迟”函数的执行,直到它被Parallel对象调用。这使得我们可以轻松地构建要并行执行的函数调用的列表。

3. 代码执行流程

  • 首先,我们导入了joblibParalleldelayed函数,以及NumPy库用于生成数字列表。
  • 然后,我们定义了一个简单的函数square,它接受一个数字并返回其平方。
  • 接下来,我们创建了一个包含一百万个数字的列表numbers
  • if __name__ == '__main__':块中,我们使用with语句创建了一个Parallel上下文管理器,并指定了使用所有可用的CPU核心(n_jobs=-1)。
  • Parallel上下文管理器中,我们使用列表推导式和delayed函数构建了要并行执行的square函数调用的列表。这个列表被传递给Parallel对象,它负责并行执行这些函数调用。
  • 最后,我们打印了结果列表的前几个元素。注意,由于结果列表可能非常长(在这个例子中有一百万个元素),我们通常不会全部打印它。

4. 并行编程的优缺点

  • 优点
    • 加速计算:通过同时执行多个任务,可以显著减少总体计算时间。
    • 利用多核CPU:现代计算机通常具有多个CPU核心,并行编程可以充分利用这些核心。
    • 简化编程:一些并行编程库(如joblib)提供了易于使用的API,使并行化变得简单。
  • 缺点
    • 复杂性增加:并行编程通常比串行编程更复杂,需要处理更多的同步和通信问题。
    • 资源竞争:当多个进程或线程同时访问共享资源时,可能会发生资源竞争和死锁等问题。
    • 可伸缩性限制:对于非常大的计算任务,可能需要使用分布式计算或超级计算机,这进一步增加了编程的复杂性。

扩展讨论

除了Paralleldelayed之外,joblib还提供了许多其他有用的功能,如内存缓存、函数持久化等。这些功能可以帮助我们更有效地管理和优化计算任务。

此外,值得注意的是,虽然joblib是一个方便的工具,但它可能不是所有并行编程任务的最佳选择。对于更复杂的并行编程需求,可能需要使用更强大的库或框架,如Python的multiprocessing模块、dask库或Cython等。

最后,并行编程是一个广泛而深入的领域,涉及许多不同的技术和方法。要充分利用并行编程的优势,需要深入了解相关的概念、工具和最佳实践。
处理结果:

Python代码示例

首先,我们来看一个简单的Python代码示例,它使用joblib模块来并行执行一个函数:
```python

定义一个简单的函数,用于计算平方

return x ** 2

创建一个数字列表

使用Parallel和delayed来并行计算平方

with Parallel(njobs=-1) as parallel
results = parallel(delayed(square)(i) for i in numbers)

打印结果的前几个元素(实际上,由于结果很长,我们通常不会全部打印)

1. 并行编程概念

并行编程是一种编程范式,它允许程序的不同部分同时执行,从而加快计算速度。这通常通过多线程、多进程或分布式计算来实现。在Python中,由于全局解释器锁(GIL)的存在,多线程并不总是能带来性能提升,因此多进程和分布式计算更为常见。

2. joblib模块

joblib是一个Python库,用于轻松地对Python函数进行并行处理。它特别适用于数值计算任务,如科学计算和机器学习。joblib提供了Paralleldelayed函数,使并行化变得简单。

  • Parallel(n_jobs=...)_ 创建一个并行计算的上下文管理器。n_jobs参数指定了要使用的进程数。如果设置为-1,则使用所有可用的CPU核心。

    3. 代码执行流程

  • 首先,我们导入了joblibParalleldelayed函数,以及NumPy库用于生成数字列表。

    4. 并行编程的优缺点

  • 优点
  • 加速计算:通过同时执行多个任务,可以显著减少总体计算时间。
  • 利用多核CPU:现代计算机通常具有多个CPU核心,并行编程可以充分利用这些核心。
  • 简化编程:一些并行编程库(如joblib)提供了易于使用的API,使并行化变得简单。
  • 复杂性增加:并行编程通常比串行编程更复杂,需要处理更多的同步和通信问题。
  • 资源竞争:当多个进程或线程同时访问共享资源时,可能会发生资源竞争和死锁等问题。
  • 可伸缩性限制:对于非常大的计算任务,可能需要使用分布式计算或超级计算机,这进一步增加了编程的复杂性。

    扩展讨论

    除了Paralleldelayed之外,joblib还提供了许多其他有用的功能,如内存缓存、函数持久化等。这些功能可以帮助我们更有效地管理和优化计算任务。
    此外,值得注意的是,虽然joblib是一个方便的工具,但它可能不是所有并行编程任务的最佳选择。对于更复杂的并行编程需求,可能需要使用更强大的库或框架,如Python的multiprocessing模块、dask库或Cython等。
    最后,并行编程是一个广泛而深入的领域,涉及许多不同的技术和方法。要充分利用并行编程的优势,需要深入了解相关的概念、工具和最佳实践。
目录
打赏
0
0
0
0
89
分享
相关文章
从零复现Google Veo 3:从数据预处理到视频生成的完整Python代码实现指南
本文详细介绍了一个简化版 Veo 3 文本到视频生成模型的构建过程。首先进行了数据预处理,涵盖了去重、不安全内容过滤、质量合规性检查以及数据标注等环节。
105 5
从零复现Google Veo 3:从数据预处理到视频生成的完整Python代码实现指南
从零开始200行python代码实现LLM
本文从零开始用Python实现了一个极简但完整的大语言模型,帮助读者理解LLM的工作原理。首先通过传统方法构建了一个诗词生成器,利用字符间的概率关系递归生成文本。接着引入PyTorch框架,逐步重构代码,实现了一个真正的Bigram模型。文中详细解释了词汇表(tokenizer)、张量(Tensor)、反向传播、梯度下降等关键概念,并展示了如何用Embedding层和线性层搭建模型。最终实现了babyGPT_v1.py,一个能生成类似诗词的简单语言模型。下一篇文章将在此基础上实现自注意力机制和完整的GPT模型。
121 14
从零开始200行python代码实现LLM
200行python代码实现从Bigram模型到LLM
本文从零基础出发,逐步实现了一个类似GPT的Transformer模型。首先通过Bigram模型生成诗词,接着加入Positional Encoding实现位置信息编码,再引入Single Head Self-Attention机制计算token间的关系,并扩展到Multi-Head Self-Attention以增强表现力。随后添加FeedForward、Block结构、残差连接(Residual Connection)、投影(Projection)、层归一化(Layer Normalization)及Dropout等组件,最终调整超参数完成一个6层、6头、384维度的“0.0155B”模型
116 11
200行python代码实现从Bigram模型到LLM
把Postman调试脚本秒变Python采集代码的三大技巧
本文介绍了如何借助 Postman 调试工具快速生成 Python 爬虫代码,并结合爬虫代理实现高效数据采集。文章通过“跨界混搭”结构,先讲解 Postman 的 API 调试功能,再映射到 Python 爬虫技术,重点分享三大技巧:利用 Postman 生成请求骨架、通过 Session 管理 Cookie 和 User-Agent,以及集成代理 IP 提升稳定性。以票务信息采集为例,展示完整实现流程,探讨其在抗封锁、团队协作等方面的价值,帮助开发者快速构建生产级爬虫代码。
103 1
把Postman调试脚本秒变Python采集代码的三大技巧
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
83 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
本文探讨了多模态RAG系统的最优实现方案,通过模态特定处理与后期融合技术,在性能、准确性和复杂度间达成平衡。系统包含文档分割、内容提取、HTML转换、语义分块及向量化存储五大模块,有效保留结构和关系信息。相比传统方法,该方案显著提升了复杂查询的检索精度(+23%),并支持灵活升级。文章还介绍了查询处理机制与优势对比,为构建高效多模态RAG系统提供了实践指导。
408 0
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
Python与MongoDB的亲密接触:从入门到实战的代码指南
本文详细介绍了Python与MongoDB结合使用的实战技巧,涵盖环境搭建、连接管理、CRUD操作、高级查询、索引优化、事务处理及性能调优等内容。通过15个代码片段,从基础到进阶逐步解析,帮助开发者掌握这对黄金组合的核心技能。内容包括文档结构设计、批量操作优化、聚合管道应用等实用场景,适合希望高效处理非结构化数据的开发者学习参考。
52 0
Python 的内建函数
Python 的内置函数列表,方便查询使用方法。
Python内置函数ord()详解
`ord()` 是 Python 中用于将单个字符转换为对应 Unicode 码点的核心函数,支持 ASCII、多语言字符及特殊符号。其返回值为整数(范围 0-1114111),适用于字符编码验证、数据清洗、自定义排序、基础加解密等场景。使用时需注意参数长度必须为 1,否则会触发 `TypeError`。结合 `chr()` 函数可实现双向转换,进阶技巧包括多字节字符处理、编码范围检测及字符分类验证等。
|
3月前
|
Python教程:os 与 sys 模块详细用法
os 模块用于与操作系统交互,主要涉及夹操作、路径操作和其他操作。例如,`os.rename()` 重命名文件,`os.mkdir()` 创建文件夹,`os.path.abspath()` 获取文件绝对路径等。sys 模块则用于与 Python 解释器交互,常用功能如 `sys.path` 查看模块搜索路径,`sys.platform` 检测操作系统等。这些模块提供了丰富的工具,便于开发中处理系统和文件相关任务。
117 14

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问