客户在哪儿AI分享全方位锁定客户“追着打”的有效方法

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: ToB销售攻占大客户需综合能力,包括个人能力、关系、团队实力、创新和学习。客户在哪儿AI提供企业全历史行为数据分析,助销售理解客户全貌,制定全场景策略,洞察偏好,从而更精准地接触和服务大客户。借助这种数据驱动的方法,销售能创造更多自然接触点,提升成功几率。

ToB销售们都特别渴望拿下一个稳定的大客户,但是,拿下一个大客户,需要拼个人能力、拼关系资源、拼团队能力、拼创新能力、拼快速学习能力,甚至还要拼运气。

谁都想为不确定性如此之大的大客户销售工作增加一丝成功的可能。今天我们就来介绍客户在哪儿AI的解决方案,希望能给各位ToB销售带来一些掌控感。

客户在哪儿AI生产的企业全历史行为数据,包含了企业及企业负责人可挖掘的所有行为,按时间维度记录着在什么地点与什么人做了什么事收获了什么等详细数据,是一张完整的数据表。

阿里企业行为数据.png

当ToB销售掌握了企业全历史行为数据后,就可以在以下几个方面去服务大客户营销了:

1、提供接触客户的全场景策略:客户在哪儿AI生产的企业全历史行为数据能够帮助你总结所有可能接触到客户的场合,让你不再受限于电话、微信、请求拜访等僵硬的方式,而是能够创造更多的"偶遇"和"不经意"的接触机会。

2、深入了解客户的偏好:就像抖音能够根据用户的行为数据推荐感兴趣的内容,ToB领域的企业同样可以通过企业全历史行为数据,准确地预测并了解客户的偏好,再根据客户的偏好进行营销。

3、你比客户更了解他们自己:掌握了客户的全历史行为数据,就相当于了解了他们的整个故事。这将让你在与客户的沟通中更加得心应手,即使是一句赞美,也能更加贴切和自然。

客户在哪儿AI提出的用“企业全历史行为数据”来服务大客户营销是在研究了大量企业行为数据并进行复盘得出的思路,希望能对ToB销售有帮助。

相关文章
|
2月前
|
人工智能 搜索推荐
写歌词的技巧和方法:塑造完美歌词结构的艺术,妙笔生词AI智能写歌词软件
歌词是音乐的灵魂,其结构艺术至关重要。开头需引人入胜,主体部分无论是叙事还是抒情,都应层次分明、情感丰富,结尾则需升华或留白,给人以深刻印象。《妙笔生词智能写歌词软件》提供多种AI辅助功能,助你轻松创作完美歌词,成为音乐创作的得力助手。
|
2月前
|
人工智能
歌词结构的巧妙安排:写歌词的方法与技巧解析,妙笔生词AI智能写歌词软件
歌词创作是一门艺术,关键在于巧妙的结构安排。开头需迅速吸引听众,主体部分要坚实且富有逻辑,结尾则应留下深刻印象。《妙笔生词智能写歌词软件》提供多种 AI 功能,帮助创作者找到灵感,优化歌词结构,写出打动人心的作品。
|
10天前
|
人工智能 数据挖掘
让客户主动找你!“AI销售助手”教你如何洞察客户痛点,实现高效成交!
在竞争激烈的商业环境中,销售团队常因无法洞察客户需求而难以促成交易。客户对销售信息的反馈通常寥寥无几,导致销售难以把握客户的真实需求。然而,随着“AI 销售助手”的出现,这一难题迎刃而解。通过精准的数据分析,AI 助手能够统计客户的点击、停留等行为,帮助销售团队深入了解客户痛点,提供针对性的解决方案,从而大幅提升成交率,开启销售工作的新篇章。
|
1月前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
96 4
|
1月前
|
人工智能 机器人 Shell
AI语音机器人安装方法 AI机器人安装代码
AI语音机器人安装方法 AI机器人安装代码
32 2
|
1月前
|
人工智能 自然语言处理 Serverless
方案测评 | AI大模型助力客户音频对话分析
该方案利用阿里云的函数计算、对象存储及智能对话分析技术,实现客户对话的自动化分析,精准识别客户意图,评估服务互动质量,提供数据驱动的决策支持。其特点包括智能化分析、数据驱动决策、低成本、自动化处理、精准识别、实时反馈及成本效益。方案适用于提升企业服务质量与客户体验,尤其在处理海量客户对话数据时表现突出。
|
23天前
|
人工智能
解决方案 | AI 大模型助力客户对话分析获奖名单公布!
解决方案 | AI 大模型助力客户对话分析获奖名单公布!
|
1月前
|
人工智能 Serverless API
电销行业的福音|AI大模型助力客户对话分析
本文介绍了如何利用AI大模型助力电销行业的客户对话分析,通过对象存储、智能对话分析技术和通义千问大模型,实现从客户语音和聊天互动中识别意图、发现服务质量问题,提升用户体验。方案部署简单,按量计费,帮助企业快速从海量对话数据中提取有价值的信息。
【AI销售助手】告别低成交率,让客户主动找上门!
在销售行业,90%的沟通未能促成交易,令销售人员头疼。AI销售助手应运而生,它不仅帮助寻找潜在客户,还能自动发送产品信息,并监测客户的查看情况。通过深入了解客户需求,销售人员可以制定更有效的策略,显著提升成交率。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
评测:AI 大模型助力客户对话分析
该评测报告详细介绍了Al大模型在客户对话分析中的应用,涵盖了实践原理、实施方法、部署体验、示例代码及业务适应性。报告指出,该方案利用NLP和机器学习技术,深度解析对话内容,精准识别用户意图,显著提升服务质量与客户体验。实施方法清晰明了,文档详尽,部署体验顺畅,提供了丰富的引导和支持。示例代码实用性强,但在依赖库安装和资源限制方面需注意调整。整体上,该方案能够满足基本对话分析需求,但在特定行业场景中还需进一步定制化开发。