在Python的广阔世界里,数据结构是构建高效算法的基石。当谈及复杂的数据关系与交互时,图(Graph)这一高级数据结构无疑占据了举足轻重的地位。不同于线性结构如列表和树,图通过节点(Vertex)和边(Edge)的任意连接,展现了数据间错综复杂的关系。解锁图的表示与遍历技巧,不仅能让你的算法思维跃升至新高度,还能在解决实际问题时游刃有余。
图的表示
在Python中,图可以通过多种方式表示,其中最常见的是邻接矩阵(Adjacency Matrix)和邻接表(Adjacency List)。
邻接矩阵:使用一个二维数组(或列表的列表)来存储图中每对顶点之间是否存在边。如果顶点i与顶点j之间有边,则对应位置为1(或边的权重),否则为0。这种方法简单直观,但空间复杂度较高,特别是对于稀疏图。
python
邻接矩阵表示法
graph = [
[0, 1, 0, 0, 1],
[1, 0, 1, 1, 1],
[0, 1, 0, 1, 0],
[0, 1, 1, 0, 1],
[1, 1, 0, 1, 0]
]
邻接表:使用字典(或列表的列表)来存储每个顶点的所有邻接点。这种方法空间效率高,特别适用于稀疏图。
python
邻接表表示法
graph = {
'A': ['B', 'E'],
'B': ['A', 'C', 'D', 'E'],
'C': ['B', 'D'],
'D': ['B', 'C', 'E'],
'E': ['A', 'B', 'D']
}
图的遍历
图的遍历是理解图结构和解决图问题的关键步骤,主要有深度优先搜索(DFS)和广度优先搜索(BFS)两种策略。
深度优先搜索(DFS):从某一顶点出发,尽可能深地搜索图的分支,直到该顶点所在的路径到达末尾,再回溯到前一个顶点继续搜索其他路径。
python
def dfs(graph, start, visited=None):
if visited is None:
visited = set()
visited.add(start)
print(start, end=' ')
for next_node in graph[start]:
if next_node not in visited:
dfs(graph, next_node, visited)
调用DFS
dfs(graph, 'A')
广度优先搜索(BFS):从某一顶点开始,先访问其所有邻接点,再逐层向外访问,直到访问完所有可达的顶点。
python
from collections import deque
def bfs(graph, start):
visited = set()
queue = deque([start])
while queue:
vertex = queue.popleft()
if vertex not in visited:
print(vertex, end=' ')
visited.add(vertex)
queue.extend(set(graph[vertex]) - visited)
调用BFS
bfs(graph, 'A')
总结
通过对比邻接矩阵与邻接表的不同表示方式,我们可以根据图的稀疏程度选择最适合的存储方式。而深度优先搜索与广度优先搜索则各有千秋,DFS更适合于寻找解的路径或判断图中是否存在环,BFS则常用于求解最短路径问题。掌握这些高级数据结构的表示与遍历方法,无疑能让你的算法思维更加灵活多变,为解决复杂问题提供有力支持。