如何理解Mysql的索引及他们的原理--------二叉查找树和平衡二叉树和B树和B+树

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 如何理解Mysql的索引及他们的原理--------二叉查找树和平衡二叉树和B树和B+树

1.索引是什么东西?

索引就是一个数据结构,我们把表中的记录用一个适合高效查找的数据结构来表示,目的就是让查询变得更高效。

2.它到底怎么运作的?

这个问题就说来话长了,且听我慢慢道来:

在mysql中使用最广泛的数据引擎是InnoDB 引擎,它里面用的是 B+ 树索引。

我们重点分析一下这个索引的原理:

要想理解B+树索引要先从 二叉查找树,平衡二叉树和 B 树说起因为B+树索引就是由他们演化而来:

在mysql中使用最广泛的数据引擎是InnoDB 引擎,它里面用的是 B+ 树索引。

我们重点分析一下这个索引的原理:

要想理解B+树索引要先从 二叉查找树,平衡二叉树和 B 树说起因为B+树索引就是由他们演化而来:

什么是二叉查找树?

 

满足这样条件的就叫二叉查找树:

每个节点左边节点的值都小于该节点,右边节点的值都大于该节点,没有值相等的节点,最顶端的节点也就是“45”被称为根节点。

二叉查找树的查找过程:

若根结点的值等于查找的值,成功,

否则,若小于根结点的值,递归查左子树(也就是根节点左边的所有节点形成的树)

若大于根结点的值,递归查右子树(也就是根节点右边所有节点形成的树)。

假设用二叉查找树创建book表的索引:

索引如下:

图一

此处的bid为主键,每个节点存储了主键的值和该条记录的内容。

如果我要查找bid为6的图书的信息,则先用6和根节点的主键值7比较发现比7小,

然后6再和7左边的节点5比较发现比5大找到5右边的节点6,找到了,取出6对应的记录行的值ee.

总共经历了3次比较,如果扫描全表需要经过5次比较。

什么是平衡二叉树?

如果索引是这样:

图二

想要找到主键键值为9的记录就需要6次比较,索引的优势完全体现不出来。


为什么会这样?原因就在于这棵树太高了,如果能想办法把它变得矮一点,胖一点就完美了。于是平衡二叉树闪亮登场:


平衡二叉树首先也是一个二叉树,需要满足二叉树的所有条件,然后有所改进,规定了左右子树的高度差不能超过1,如果插入数据导致高度差超过了1则自动进行调整,回复到平衡状态。这也是平衡二叉树名字的由来。


图一就是一颗平衡二叉树,图二根节点的左子树高度为0,右子树高度为5,高度差是5超过了1所以不是一颗平衡二叉树。


平衡二叉树查找效率要高于二叉树。

什么是B树?

由前面的推导我们可以看出要想查找,比较的次数最少,必须想办法降低树形结构的高度,不管是二叉树还是平衡二叉树,每个节点最多只能有两个子节点,这就注定了它的高度受限于子节点的个数,于是B树横空出世.


从上图可以看到B树的节点可以不止两个子节点,这样的好处就是树可以变得又矮又胖,矮胖的树是索引的最爱,用它做索引可以降低磁盘的IO.


B树中的每个节点根据实际情况可以包含大量的键值,数据和指针,上图所示为一个3阶的B树:


每点占用一个磁盘块的磁盘空个节间,一个节点上有两个升序排序的键值和三个指向子树根节点的指针,指针存储的是子节点所在磁盘块的地址。两个键值划分成的三个范围域对应三个指针指向的子树的数据的范围域。以根节点为例,键值为17和35,P1指针指向的子树的数据范围为小于17,P2指针指向的子树的数据范围为17~35,P3指针指向的子树的数据范围为大于35。


模拟查找关键字29的过程:


根据根节点找到磁盘块1,读入内存。【磁盘I/O操作第1次】


比较关键字29在区间(17,35),找到磁盘块1的指针P2。


根据P2指针找到磁盘块3,读入内存。【磁盘I/O操作第2次】


比较关键字29在区间(26,30),找到磁盘块3的指针P2。


根据P2指针找到磁盘块8,读入内存。【磁盘I/O操作第3次】


在磁盘块8中的关键字列表中找到关键字29。


分析上面过程,发现需要3次磁盘I/O操作,和3次内存查找操作。由于内存中的键值是一个有序表结构,可以利用二分法查找提高效率。而3次磁盘I/O操作是影响整个B树查找效率的决定因素。

什么是B+树?

想想还有没有可能进一步优化,在B树中每个节点的内容由三部分组成:键值,指针,数据,而磁盘块的容量是有限的,并不是每次读取磁盘块都会取出里面的数据,只是在最后一次读取的时候才会取出里面的数据,能不能将数据只存储在叶子节点里面,非叶子节点只存储键值和指针呢?这样就能最大化的利用磁盘块空间,一个磁盘块也就能存更多的东西了,没错,B+树就是这么干的

假设在非叶子节点不存数据以后每个节点可以存储4个键值和指针,就变成了上图的B+树

B+树相对于B树有几点不同:

  1. 非叶子节点只存储键值和指针。
  2. 所有叶子节点之间都有一个链指针。
  3. 数据记录都存放在叶子节点中。

在B+树中因为叶子节点的键值是按顺序排列的所以进行键值的范围查找效率非常高。

在B+树中由于一个节点存储了更多的键值和指针,所以同样多的内容可以降低树的高度,减少磁盘io次数,从而提高效率。


数据库的索引分为聚集索引和非聚集索引,innoDb存储引擎中的聚集索引表中的数据按主键的顺序存放,它实际上就是按主键构建的一个B+树,叶子节点存放的是数据行记录。所以数据库中的数据实际上是索引的一部分。由于实际的数据页只能按照一个顺序存放,所以每张表聚集索引只能有一个。


非聚集索引的叶子节点中存放的是键值和主键值,所以通过非聚集索引需要先查找到主键值然后通过聚集索引查询到具体的数据,因此非聚集索引的效率要低于聚集索引。非聚集索引并不会影响到数据的存储顺序,所以非聚集索引可以存在多个。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
3月前
|
存储 SQL 关系型数据库
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
|
3月前
|
存储 关系型数据库 MySQL
MySQL数据库索引的数据结构?
MySQL中默认使用B+tree索引,它是一种多路平衡搜索树,具有树高较低、检索速度快的特点。所有数据存储在叶子节点,非叶子节点仅作索引,且叶子节点形成双向链表,便于区间查询。
116 4
|
3月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
|
25天前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
60 3
|
1月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。
|
2月前
|
存储 运维 关系型数据库
从MySQL到云数据库,数据库迁移真的有必要吗?
本文探讨了企业在业务增长背景下,是否应从 MySQL 迁移至云数据库的决策问题。分析了 MySQL 的优势与瓶颈,对比了云数据库在存储计算分离、自动化运维、多负载支持等方面的优势,并提出判断迁移必要性的五个关键问题及实施路径,帮助企业理性决策并落地迁移方案。
|
18天前
|
关系型数据库 MySQL 分布式数据库
阿里云PolarDB云原生数据库收费价格:MySQL和PostgreSQL详细介绍
阿里云PolarDB兼容MySQL、PostgreSQL及Oracle语法,支持集中式与分布式架构。标准版2核4G年费1116元起,企业版最高性能达4核16G,支持HTAP与多级高可用,广泛应用于金融、政务、互联网等领域,TCO成本降低50%。
|
19天前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。
|
20天前
|
关系型数据库 分布式数据库 数据库
阿里云数据库收费价格:MySQL、PostgreSQL、SQL Server和MariaDB引擎费用整理
阿里云数据库提供多种类型,包括关系型与NoSQL,主流如PolarDB、RDS MySQL/PostgreSQL、Redis等。价格低至21元/月起,支持按需付费与优惠套餐,适用于各类应用场景。
|
19天前
|
SQL 关系型数据库 MySQL
Mysql数据恢复—Mysql数据库delete删除后数据恢复案例
本地服务器,操作系统为windows server。服务器上部署mysql单实例,innodb引擎,独立表空间。未进行数据库备份,未开启binlog。 人为误操作使用Delete命令删除数据时未添加where子句,导致全表数据被删除。删除后未对该表进行任何操作。需要恢复误删除的数据。 在本案例中的mysql数据库未进行备份,也未开启binlog日志,无法直接还原数据库。

推荐镜像

更多
下一篇
日志分析软件