高并发场景下,到底先更新缓存还是先更新数据库?

简介: 高并发场景下,到底先更新缓存还是先更新数据库?

在大型系统中,为了减少数据库压力通常会引入缓存机制,一旦引入缓存又很容易造成缓存和数据库数据不一致,导致用户看到的是旧数据。

为了减少数据不一致的情况,更新缓存和数据库的机制显得尤为重要,接下来带领大家踩踩坑。

 

(1)读请求常见流程

应用首先会判断缓存是否有该数据,缓存命中直接返回数据,缓存未命中即缓存穿透到数据库,从数据库查询数据然后回写到缓存中,最后返回数据给客户端。

 

(2)写请求常见流程

首先更新数据库,然后从缓存中删除该数据。

看了写请求的图之后,有些同学可能要问了:为什么要删除缓存,直接更新不就行了?这里涉及到几个坑,我们一步一步踩下去。

 

Cache aside踩坑

Cache aside策略如果用错就会遇到深坑,下面我们来逐个踩。

踩坑一:先更新数据库,再更新缓存

如果同时有两个写请求需要更新数据,每个写请求都先更新数据库再更新缓存,在并发场景可能会出现数据不一致的情况

 


如上图的执行过程:

(1)写请求1更新数据库,将 age 字段更新为18;

(2)写请求2更新数据库,将 age 字段更新为20;

(3)写请求2更新缓存,缓存 age 设置为20;

(4)写请求1更新缓存,缓存 age 设置为18;

执行完预期结果是数据库 age 为20,缓存 age 为20,结果缓存 age为18,这就造成了缓存数据不是最新的,出现了脏数据。

 

踩坑二:先删缓存,再更新数据库

如果写请求的处理流程是先删缓存再更新数据库,在一个读请求和一个写请求并发场景下可能会出现数据不一致情况。

 

如上图的执行过程:

(1)写请求删除缓存数据;

(2)读请求查询缓存未击中(Hit Miss),紧接着查询数据库,将返回的数据回写到缓存中;

(3)写请求更新数据库。

整个流程下来发现数据库中age为20,缓存中age为18,缓存和数据库数据不一致,缓存出现了脏数据。

 

踩坑三:先更新数据库,再删除缓存

在实际的系统中针对写请求还是推荐先更新数据库再删除缓存,但是在理论上还是存在问题,以下面这个例子说明

 

如上图的执行过程:

(1)读请求先查询缓存,缓存未击中,查询数据库返回数据;

(2)写请求更新数据库,删除缓存;

(3)读请求回写缓存;

整个流程操作下来发现数据库age为20缓存age为18,即数据库与缓存不一致,导致应用程序从缓存中读到的数据都为旧数据。

但我们仔细想一下,上述问题发生的概率其实非常低,因为通常数据库更新操作比内存操作耗时多出几个数量级,上图中最后一步回写缓存(set age 18)速度非常快,通常会在更新数据库之前完成。


如果这种极端场景出现了怎么办?我们得想一个兜底的办法:缓存数据设置过期时间。通常在系统中是可以允许少量的数据短时间不一致的场景出现。

Read through

在 Cache Aside 更新模式中,应用代码需要维护两个数据源头:一个是缓存,一个是数据库。而在 Read-Through 策略下,应用程序无需管理缓存和数据库,只需要将数据库的同步委托给缓存提供程序 Cache Provider 即可。所有数据交互都是通过抽象缓存层完成的。

如上图,应用程序只需要与Cache Provider交互,不用关心是从缓存取还是数据库。

在进行大量读取时,Read-Through 可以减少数据源上的负载,也对缓存服务的故障具备一定的弹性。如果缓存服务挂了,则缓存提供程序仍然可以通过直接转到数据源来进行操作。


Read-Through 适用于多次请求相同数据的场景,这与 Cache-Aside 策略非常相似,但是二者还是存在一些差别,这里再次强调一下:

  • 在 Cache-Aside 中,应用程序负责从数据源中获取数据并更新到缓存。
  • 在 Read-Through 中,此逻辑通常是由独立的缓存提供程序(Cache Provider)支持。

 

Write through

Write-Through 策略下,当发生数据更新(Write)时,缓存提供程序 Cache Provider 负责更新底层数据源和缓存。

缓存与数据源保持一致,并且写入时始终通过抽象缓存层到达数据源。

Cache Provider类似一个代理的作用。

Write behind

Write behind在一些地方也被称为Write back, 简单理解就是:应用程序更新数据时只更新缓存, Cache Provider每隔一段时间将数据刷新到数据库中。说白了就是延迟写入

如上图,应用程序更新两个数据,Cache Provider 会立即写入缓存中,但是隔一段时间才会批量写入数据库中。

这种方式有优点也有缺点:

  • 优点是数据写入速度非常快,适用于频繁写的场景。
  • 缺点是缓存和数据库不是强一致性,对一致性要求高的系统慎用。

总结一下

学了这么多,相信大家对缓存更新的策略都已经有了清晰的认识。最后稍稍总结一下。

缓存更新的策略主要分为三种:

  • Cache aside
  • Read/Write through
  • Write behind

Cache aside 通常会先更新数据库,然后再删除缓存,为了兜底通常还会将数据设置缓存时间。


Read/Write through 一般是由一个 Cache Provider 对外提供读写操作,应用程序不用感知操作的是缓存还是数据库。


Write behind简单理解就是延迟写入,Cache Provider 每隔一段时间会批量输入数据库,优点是应用程序写入速度非常快。

相关文章
|
1月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
74 6
|
14天前
|
缓存 关系型数据库 MySQL
高并发架构系列:数据库主从同步的 3 种方案
本文详解高并发场景下数据库主从同步的三种解决方案:数据主从同步、数据库半同步复制、数据库中间件同步和缓存记录写key同步,旨在帮助解决数据一致性问题。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
高并发架构系列:数据库主从同步的 3 种方案
|
9天前
|
缓存 NoSQL 数据库
运用云数据库 Tair 构建缓存为应用提速,完成任务得苹果音响、充电套装等好礼!
本活动将带大家了解云数据库 Tair(兼容 Redis),通过体验构建缓存以提速应用,完成任务,即可领取罗马仕安卓充电套装,限量1000个,先到先得。邀请好友共同参与活动,还可赢取苹果 HomePod mini、小米蓝牙耳机等精美好礼!
|
14天前
|
缓存 NoSQL 中间件
redis高并发缓存中间件总结!
本文档详细介绍了高并发缓存中间件Redis的原理、高级操作及其在电商架构中的应用。通过阿里云的角度,分析了Redis与架构的关系,并展示了无Redis和使用Redis缓存的架构图。文档还涵盖了Redis的基本特性、应用场景、安装部署步骤、配置文件详解、启动和关闭方法、systemctl管理脚本的生成以及日志警告处理等内容。适合初学者和有一定经验的技术人员参考学习。
103 7
|
20天前
|
缓存 监控 Java
Java 线程池在高并发场景下有哪些优势和潜在问题?
Java 线程池在高并发场景下有哪些优势和潜在问题?
|
23天前
|
存储 缓存 数据库
缓存技术有哪些应用场景呢
【10月更文挑战第19天】缓存技术有哪些应用场景呢
|
26天前
|
NoSQL Java Redis
京东双十一高并发场景下的分布式锁性能优化
【10月更文挑战第20天】在电商领域,尤其是像京东双十一这样的大促活动,系统需要处理极高的并发请求。这些请求往往涉及库存的查询和更新,如果处理不当,很容易出现库存超卖、数据不一致等问题。
44 1
|
28天前
|
缓存 弹性计算 NoSQL
新一期陪跑班开课啦!阿里云专家手把手带你体验高并发下利用云数据库缓存实现极速响应
新一期陪跑班开课啦!阿里云专家手把手带你体验高并发下利用云数据库缓存实现极速响应
|
1月前
|
Java Linux 应用服务中间件
【编程进阶知识】高并发场景下Bio与Nio的比较及原理示意图
本文介绍了在Linux系统上使用Tomcat部署Java应用程序时,BIO(阻塞I/O)和NIO(非阻塞I/O)在网络编程中的实现和性能差异。BIO采用传统的线程模型,每个连接请求都会创建一个新线程进行处理,导致在高并发场景下存在严重的性能瓶颈,如阻塞等待和线程创建开销大等问题。而NIO则通过事件驱动机制,利用事件注册、事件轮询器和事件通知,实现了更高效的连接管理和数据传输,避免了阻塞和多级数据复制,显著提升了系统的并发处理能力。
57 0
|
1月前
|
消息中间件 前端开发 Java
java高并发场景RabbitMQ的使用
java高并发场景RabbitMQ的使用
81 0