MATLAB数据分析、从算法到实现

简介: MATLAB数据分析、从算法到实现

从代码到函数,从算法到实战,从问题到应用,由浅入深掌握科学计算方法,高效解决实际问题。

在回归问题中往往存在这样一个问题:并不是每个自变量都对回归问题的求解有益。因此,在进行回归分析时,需要先对自变量进行相关性分析,将不相关的自变量删除。本节以某省生产总值数据拟合问题为例,讲解自变量相关性分析,并在此基础上构建多元线性回归模型,对生产总值进行预测。

①某省生产总值数据拟合问题简介

表 1-1 为某省 10 年生产总值数据。根据表中数据,判断影响生产总值的因素,并基于这些因素建立预测该省生产总值的多元线性回归模型。

表 1-1    某省 10 年生产总值

②多元线性回归模型

最常用的判断两组数据是否有相关性的指标为皮尔逊相关性。计算表 1-1 中除生产总值之外的变量之间的皮尔逊相关性,结果如图 1-2 所示。

图1-2    8个变量之间的相关性


在图 1-2 中,年份与第三产业、建筑业,第三产业与第一产业等自变量之间的皮尔逊相关系数大于 0.99,可以认为其完全线性相关,完全线性相关的两个自变量可以只保留一个。在 8 个变量中,依次删除相关性大于 0.97 的变量,过程如下:根据年份,删除第一产业、第三产业、建筑业;根据第二产业,删除工业;剩余的自变量为年份、第二产业、交通运输仓储和邮政业、批发和零售业。此时,新的相关性矩阵如图 1-3 所示。

图 1-3    4个变量之间的相关性

根据删除之后的自变量,记自变量年份、第二产业、交通运输仓储和邮政业、批发和零售业分别为 x₁,x₂,x₃,x₄,因变量生产总值为 y,则多元线性回归模型记为:

y=k₁x₁+k₂x₂+k₃x₃+k₄x₄

利用最小二乘法求解系数,实现如代码 1-4 所示。

最小二乘法回归系数拟合
data = xlsread('data_13_7.xlsx');
x = data;
y = data(:,2);
x(:,2) = [];
xx = x(:,[1,3,7,8]);
tt = t([1,3,7,8]);
kk = inv(xx'*xx)*xx'*y

计算得到回归系数 kk 后,得到模型:

y=0.5711x₁+0.4940x₂+4.4931x₃+7.8714x₄

可以根据多元线性回归模型,对每年的生产总值进行预测,将预测值与真实值比较,如图 1-4 所示。可以看出,该多元线性回归模型的预测值与真实值之间的误差不大,模型能够反映真实状况。

图 1-4 多元线性回归结果示意图


相关文章
|
9天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
143 80
|
3天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
2天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
6天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
14天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
22天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
22天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
19小时前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
25天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。

热门文章

最新文章