Python基于深度学习算法实现图书推荐系统项目实战

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: Python基于深度学习算法实现图书推荐系统项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

在线推荐系统是许多电子商务网站的事情。推荐系统广泛地向最适合其口味和特征的顾客推荐产品,根据真实世界中的用户-图书交互记录,利用深度学习相关技术,建立一个精确稳定的图书推荐系统,预测用户可能会进行阅读的书籍。

本项目应用深度学习嵌入模型来实现图书推荐系统。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下

数据详情如下(部分展示):

编号

字段

备注

1

book_id

 

2

user_id

 

3

rating

 

部分数据展示:

image.png

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

image.png

从上图可以看到,总共有3个字段。

关键代码:

image.png

3.2缺失值统计

使用Pandas工具的info()方法统计每个特征缺失情况:

image.png

从上图可以看到,数据不存在缺失值,总数据量为981756条。

关键代码:

image.png

3.3查看数据集形状

通过Pandas工具的shape属性来查看数据集的形状:

image.png

关键代码如下:

image.png

统计用户数量和图书数量:

image.png

关键代码如下:

image.png

4.探索性数据分析

4.1.分组可视化

通过评分进行分组统计,如下图所示:

image.png

5.特征工程

5.1 数据集拆分

数据集分为训练集和测试集,80%训练集和20%测试集,关键代码如下:

image.png

6.构建图书推荐模型

主要使用深度学习嵌入模型算法,用于目标推荐。

6.1 建立初始嵌入模型 

 

编号

模型名称

参数

1

自定义嵌入模型

Input

2

Embedding

3

Flatten

4

adam优化器

5

mean_squared_error均方误差损失函数

模型概要信息:

image.png

6.2 训练集损失图

image.png

6.3 模型评估

image.png

通过上图可以看出,此模型的损失为0.9201

6.4 模型预测

image.png

6.5 模型优化 

编号

模型名称

参数

1

自定义嵌入模型

Input

2

Embedding

3

Flatten

4

Concatenate连接层

5

Dense全连接层

6

adam优化器

7

mean_squared_error均方误差损失函数

 

模型概要信息:

image.png

7.模型评估与预测

7.1 训练集损失图

image.png

7.2 评估指标及结果

image.png

通过上图可以看到,优化后的模型损失为0.7458,模型损失比初始化模型有所降低。

7.3 模型预测

image.png

通过上图可以看出,可以根据预测出来的评分来进行为用户推荐图书,例如:可以按照用户分组排序,评分从高到低排序,把评分高的图书推荐给用户。

8.结论与展望

综上所述,本项目采用深度学习算法来构建图书推荐系统,最终证明了我们提出的模型效果良好,可用于日常生活中进行建模预测,以提高生产价值。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1QvfRfG54Occ_suTZToU2Og 
提取码:bksa
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
9天前
|
机器学习/深度学习 存储 算法
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
|
25天前
|
监控 算法 安全
深度洞察内网监控电脑:基于Python的流量分析算法
在当今数字化环境中,内网监控电脑作为“守城卫士”,通过流量分析算法确保内网安全、稳定运行。基于Python的流量分析算法,利用`scapy`等工具捕获和解析数据包,提取关键信息,区分正常与异常流量。结合机器学习和可视化技术,进一步提升内网监控的精准性和效率,助力企业防范潜在威胁,保障业务顺畅。本文深入探讨了Python在内网监控中的应用,展示了其实战代码及未来发展方向。
|
5天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
42 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
5天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
28 10
|
23天前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
50 17
|
26天前
|
存储 算法 安全
U 盘管控情境下 Python 二叉搜索树算法的深度剖析与探究
在信息技术高度发达的今天,数据安全至关重要。U盘作为常用的数据存储与传输工具,其管控尤为关键。本文探讨Python中的二叉搜索树算法在U盘管控中的应用,通过高效管理授权U盘信息,防止数据泄露,保障信息安全。二叉搜索树具有快速插入和查找的优势,适用于大量授权U盘的管理。尽管存在一些局限性,如树结构退化问题,但通过优化和改进,如采用自平衡树,可以有效提升U盘管控系统的性能和安全性。
26 3
|
计算机视觉 Python Windows
推荐一个计算机视觉图书:python计算机视觉编程
编辑部的主页:好像没啥用 http://shop.oreilly.com/product/0636920022923.do 每章的代码,github上面的:中文版 https://github.
1066 0
|
2月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
2月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
2月前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
126 80