Python实现深度神经网络RNN-LSTM分类模型(医学疾病诊断)

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: Python实现深度神经网络RNN-LSTM分类模型(医学疾病诊断)

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png


1.项目背景

随着互联网+的不断深入,我们已步入人工智能时代,机器学习作为人工智能的一个分支越来越多地被应用于各行各业,其中在临床医学检测中也得到了越来越多的应用。基于临床医学越来越多的检测数据,通过建立一个机器学习模型来进行更加智能地预测已成为当今时代的使命。本模型也是基于一些历史的疾病数据进行建模、预测。

2.收集数据

本数据是模拟数据,分为两部分数据:

训练数据集:data.csv

测试数据集:test.csv

在实际应用中,根据自己的数据进行替换即可。

特征数据:agegenderbody_mass_indexheart_failure hypertension chronic_obstructic_pulmonary_disease chronic_liver_disease……renal_toxic_drug  

标签数据:acute_kidney_disease

3.数据预处理

1)原始数据描述

image.png

2)数据完整性、数据类型查看:

image.png
  image.png

3)数据缺失值个数:

image.png

image.png

可以看到数据不存在缺失值。

 

4.探索性数据分析

1)显示age特征的分布情况:

image.png

2)显示gender特征的分布情况:

image.png

 

3)显示heart_failure特征的分布情况:

image.png

剩下的其它特征,可以自行分析。

 

4)相关性分析

image.png

image.png

说明:正值是正相关、负值时负相关,值越大变量之间的相关性越强。

5.特征工程

1)特征数据和标签数据拆分,acute_kidney_disease为标签数据,除acute_kidney_disease之外的为特征数据;

image.png

2)数据集拆分,分为训练集和尝试集

image.png

image.png

数据集已提前分好,直接读取即可。

6.LSTM建模  

1)神经网路LSTM简单介绍:

LSTM网络是RNN的一个变体,也是目前更加通用的循环神经网络结构,全程为Long Short-Term Memory,翻译成中文叫作短记忆’”网络。读的时候,后面要稍作停顿,不要读成长短记忆网络,因为那样的话,就不知道记忆到底是长还是短。本质上,它还是短记忆网络,只是用某种方法把短记忆尽可能延长了一些。

简而言之,LSTM就是携带一条记忆轨道的循环神经网络,是专门针对梯度消失问题所做的改进。它增加的记忆轨道是一种携带信息跨越多个时间步的方法。可以先想象有一条平行于时间序列处理过程的传送带,序列中的信息可以在任意位置上传送带,然后被传送到更晚的时间步,并在需要时原封不动地过去,接受处理。这就是LSTM原理:就像大脑中的记忆存储器,保存信息以便后面使用,我们回忆过去,较早期的信息就又浮现在脑海中,不会随着时间的流逝而消失得无影无踪。

这个思路和残差连接非常相似,其区别在于,残差连接解决的是层与层之间得梯度消失问题,而LSTM解决的是循环层与神经元层内循环处理过程中的消息消失问题。

简单来说,C轨道将携带着跨越时间步的信息。它在不同的时间步的值为Ct,这些信息将与输入连接和循环连接进行运算(即与权重矩阵进行点积,然后加上一个偏置,以及加一个激活过程),从而影响传递到下一个时间步的状态如右图所示。

image.png

LSTM-增加了一条记忆轨道,携带序列中较早的信息

 

2) 建立LSTM分类模型,模型参数如下:

 

 

编号

参数

1

loss='binary_crossentropy'

2

optimizer='adam'

3

metrics=['acc']

 

其它参数根据具体数据,具体设置。

 

3)神经网络结构及概要

神经网络结构图: 

image.png

 

神经网络概要:

image.png

可以看到每层网络的类型、形状和参数。

 

7.模型评估

1)评估指标主要采用查准率、查全率、F1

 

编号

评估指标名称

评估指标值

1

查准率

98.74%

2

查全率

100.00%

3

F1

99.37%

 

通过上述表格可以看出,此模型效果良好。

 

2)损失和准确率图

image.png

3)ROC曲线绘制

训练集ROC曲线图:

image.png

测试集ROC曲线图:

image.png

8.临床应用

根据测试集的特征数据,来预测这些患者是否会有相关疾病;根据预测结果:针对将来可能会患有此种疾病的人员,提前进行预防。

预测结果如下:

image.png

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1PE58j5RizuobkojAsSFwGg 
提取码:5gnl
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
打赏
0
0
0
0
48
分享
相关文章
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
200行python代码实现从Bigram模型到LLM
本文从零基础出发,逐步实现了一个类似GPT的Transformer模型。首先通过Bigram模型生成诗词,接着加入Positional Encoding实现位置信息编码,再引入Single Head Self-Attention机制计算token间的关系,并扩展到Multi-Head Self-Attention以增强表现力。随后添加FeedForward、Block结构、残差连接(Residual Connection)、投影(Projection)、层归一化(Layer Normalization)及Dropout等组件,最终调整超参数完成一个6层、6头、384维度的“0.0155B”模型
116 11
200行python代码实现从Bigram模型到LLM
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
2月前
|
探索Python高级并发与网络编程技术。
可以看出,Python的高级并发和网络编程极具挑战,却也饱含乐趣。探索这些技术,你将会发现:它们好比是Python世界的海洋,有穿越风暴的波涛,也有寂静深海的奇妙。开始旅途,探索无尽可能吧!
65 15
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
81 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于Matlab 2022a/2024b实现,结合灰狼优化(GWO)算法与双向长短期记忆网络(BiLSTM),用于序列预测任务。核心代码包含数据预处理、种群初始化、适应度计算及参数优化等步骤,完整版附带中文注释与操作视频。BiLSTM通过前向与后向处理捕捉序列上下文信息,GWO优化其参数以提升预测性能。效果图展示训练过程与预测结果,适用于气象、交通等领域。LSTM结构含输入门、遗忘门与输出门,解决传统RNN梯度问题,而BiLSTM进一步增强上下文理解能力。
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型
本文介绍了如何使用 Python 和 YOLO v8 开发专属的 AI 视觉目标检测模型。首先讲解了 YOLO 的基本概念及其高效精准的特点,接着详细说明了环境搭建步骤,包括安装 Python、PyCharm 和 Ultralytics 库。随后引导读者加载预训练模型进行图片验证,并准备数据集以训练自定义模型。最后,展示了如何验证训练好的模型并提供示例代码。通过本文,你将学会从零开始打造自己的目标检测系统,满足实际场景需求。
452 0
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型
Python 原生爬虫教程:网络爬虫的基本概念和认知
网络爬虫是一种自动抓取互联网信息的程序,广泛应用于搜索引擎、数据采集、新闻聚合和价格监控等领域。其工作流程包括 URL 调度、HTTP 请求、页面下载、解析、数据存储及新 URL 发现。Python 因其丰富的库(如 requests、BeautifulSoup、Scrapy)和简洁语法成为爬虫开发的首选语言。然而,在使用爬虫时需注意法律与道德问题,例如遵守 robots.txt 规则、控制请求频率以及合法使用数据,以确保爬虫技术健康有序发展。
297 31

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问