「AIGC」AIGC技术入门

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: **摘要:**探索AI概念与实践,涵盖AI、AIGC(人工智能生成内容)、AGI(人工通用智能)、模型大小、提示词工程、神经网络等。深度学习框架如TensorFlow支持模型构建,Transformer模型利用自注意力机制处理序列数据。大模型如LLMs擅长复杂任务,能适应企业定制需求,例如知识库问答。小模型则在资源有限时发挥作用。召回率衡量搜索效果,Tokenization将文本转化为模型输入。实际应用中,AI用于天气预报、内容生成,Transformer助力翻译,定制模型解决企业内部问题,如客户服务和知识库查询。

人工智能(AI)领域的多个重要概念和实践。

一、思考问题

  • 什么是AI?
  • 什么是AIGC?
  • 什么是AGI?
  • 什么是模型?
  • 什么是大模型(LLM),什么是小模型?
  • 什么是提示词工程?如何写提示词
  • 什么是神经网络?
  • 召回率是什么含义?
  • 常见深度学习的框架及工具有哪些?
  • 什么是transformer?
  • 自注意力机制是什么?
  • token是什么,tokeen如何转换为模型的输入(分
    词编码)?
  • 各个模型上下文限制是多少?
  • 大模型有哪些能力可以满足企业内部定制化的需求?
  • 如何大模型完成企业内知识库知识的问答?(提示词:R/AG)
  • 大模型是如何实现FunctionCall函数调用的?

二、探索

  • AI(人工智能):AI是指使计算机系统模拟人类智能的技术,包括学习、推理、自我修正、感知、理解语言等能力。

  • AIGC(人工智能生成内容):AIGC指的是利用人工智能技术自动或半自动地生成内容的过程,如文本、图像、音乐等。

  • AGI(人工通用智能):AGI是指具有广泛智能的人工智能系统,能够执行任何智能生物能够执行的智能任务。

  • 模型:在AI中,模型通常是指通过学习数据集而形成的算法或数学结构,它能够对数据进行预测或分类。

  • 大模型(Large Language Models, LLMs):指的是具有大量参数(通常数十亿到数百亿)的语言模型,能够处理复杂的语言任务。

  • 小模型:相对于大模型,小模型拥有较少的参数,适用于资源受限的环境或特定的、不那么复杂的任务。

  • 提示词工程:指的是在与AI系统交互时,精心设计输入语句以引导模型产生期望输出的过程。写提示词需要考虑清晰性、具体性和引导性。

  • 神经网络:一种模仿人脑神经元网络结构的计算模型,用于处理和解决各种复杂问题。

  • 召回率:在信息检索中,召回率是指检索出的相关文档数与所有相关文档总数的比例,是衡量搜索系统性能的一个指标。

  • 常见深度学习框架及工具:包括TensorFlow、PyTorch、Keras、PaddlePaddle等。

  • Transformer:一种基于自注意力机制的深度学习模型,广泛应用于自然语言处理任务。

  • 自注意力机制:允许模型在处理序列时同时考虑序列中的所有位置,而不是仅考虑相邻元素。

  • Token:在自然语言处理中,Token是文本的基本单位,如单词或字符。

  • Tokenization:是将文本转换为模型可以理解的数值形式的过程,通常涉及将文本分割成Token,然后转换为数值ID。

  • 模型上下文限制:指的是模型在处理输入时能够考虑的Token数量限制,这通常受模型架构和内存限制。

  • 大模型满足企业内部定制化需求的能力:包括自然语言理解、文本生成、个性化推荐、自动化客户服务等。

  • 大模型完成企业内知识库问答:通过训练模型以包含企业知识库的数据,使其能够准确回答与企业知识相关的问题。

  • FunctionCall函数调用:在一些高级的AI模型中,可以编程实现特定的函数调用,以执行特定的任务或操作。

三、实践

AI(人工智能):
案例:一个智能助手可以根据你的问题提供答案。比如,你问“明天的天气如何?”AI会分析当前的天气数据并预测明天的天气。

AIGC(人工智能生成内容):
案例:使用AI生成一篇文章。给定一个主题,AI可以自动撰写一篇文章,包括引言、主体和结论。

AGI(人工通用智能):
案例:一个能够像人类一样在多种环境中灵活应用知识和技能的机器人,比如可以绘画、下棋、解决问题等。

模型:
案例:一个垃圾邮件过滤器就是一个模型,它通过学习区分垃圾邮件和非垃圾邮件的特征来工作。

大模型(LLMs):
案例:一个能够理解并生成多种语言的翻译模型,它拥有数十亿参数,能够处理复杂的语言转换任务。

小模型:
案例:一个简单的手写数字识别模型,它可能只有几千个参数,但足以完成基本的图像分类任务。

提示词工程:
案例:当你向AI提问时,使用“定义”作为提示词,AI会提供相关术语的定义,如“请定义‘人工智能’”。

神经网络:
案例:一个识别图像中的猫和狗的神经网络,它通过学习图像中的特征来区分猫和狗。

召回率
案例:在一个搜索引擎中,如果召回率是90%,意味着对于所有相关的搜索结果,搜索引擎能够找到其中的90%。

深度学习框架及工具:
案例:使用TensorFlow框架训练一个识别手写数字的模型,通过编写代码来构建、训练和测试神经网络。

Transformer:
案例:使用Transformer模型来翻译文本,比如将英文句子“Hello, how are you?”翻译成中文。

自注意力机制:
案例:在处理一个句子时,自注意力机制允许模型同时关注句子中的每个单词,以更好地理解整个句子的含义。

Token:
案例:将句子“Hello, how are you?”转换为Token可能得到["Hello", ",", "how", "are", "you", "?"]。

Tokenization:
案例:将上述Token转换为数值ID,以便模型能够处理。比如,"Hello"可能被转换为数字1,","为2,依此类推。

模型上下文限制:
案例:一个模型可能只能处理最多512个Token的输入,这意味着它在处理长文本时可能会截断信息。

大模型满足企业内部定制化需求:
案例:一个企业使用定制化的AI模型来自动生成客户服务报告,这个模型能够理解企业特定的术语和格式。

大模型完成企业内知识库问答:
案例:企业内部有一个关于产品支持的知识库,AI模型被训练来理解这个知识库,并能够回答员工关于产品的问题。

FunctionCall函数调用:
案例:在AI模型中,可以定义一个函数,当用户问到特定问题时,模型会调用这个函数来提供答案。比如,当用户询问股票价格时,模型会调用一个实时股票信息API来获取数据。

通过这些案例,我们可以看到AI技术是如何在不同的场景中被应用的,以及它们是如何通过不同的技术和方法来实现特定的功能和目的的。

相关文章
|
19天前
|
人工智能 自然语言处理 数据可视化
什么是AIGC?如何使用AIGC技术辅助办公?
2分钟了解AIGC技术及其如何提高日常办公效率!
58 4
什么是AIGC?如何使用AIGC技术辅助办公?
|
2月前
|
人工智能 自然语言处理 数据挖掘
Claude 3.5:一场AI技术的惊艳飞跃 | AIGC
在这个科技日新月异的时代,人工智能(AI)的进步令人惊叹。博主体验了Claude 3.5 Sonnet的最新功能,对其卓越的性能、强大的内容创作与理解能力、创新的Artifacts功能、视觉理解与文本转录能力、革命性的“computeruse”功能、广泛的应用场景与兼容性以及成本效益和易用性深感震撼。这篇介绍将带你一窥其技术前沿的魅力。【10月更文挑战第12天】
70 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AIGC的底层技术:人工智能通用计算架构
探索AIGC的底层技术:人工智能通用计算架构
136 3
|
2月前
|
人工智能 自然语言处理 搜索推荐
超越边界:探索2023年AIGC技术盛宴,预测前沿科技的奇迹 🚀
本文探讨了互联网内容生产从PGC、UGC到AIGC的演变,特别关注了AIGC(人工智能生成内容)的发展及其对未来内容生产的深远影响。文章详细介绍了AIGC的定义、技术进展(如生成算法、多模态技术、AI芯片等),并展示了AIGC在多个领域的广泛应用,如代码生成、智能编程、个性化服务等。未来,AIGC将在各行各业创造巨大价值,推动社会进入更加智能化的时代。同时,文章也探讨了AIGC对开发者的影响,以及其可能无法完全取代人类的原因,强调开发者可以利用AIGC提升工作效率。
46 0
|
4月前
|
机器学习/深度学习 数据采集 人工智能
作为AIGC技术的一种应用-bard
8月更文挑战第22天
68 15
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
|
4月前
|
人工智能
AIGC图生视频技术下的巴黎奥运高光时刻
图生视频,Powered By「 阿里云视频云 」
138 4
|
5月前
|
存储 人工智能 搜索推荐
|
4月前
|
传感器 人工智能 供应链
制造业的未来:AIGC及其他先进技术
制造业的未来:AIGC及其他先进技术
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC技术大揭秘:它将如何彻底颠覆内容创作?未来世界的奇迹!
【8月更文挑战第8天】在信息爆炸的时代,人工智能生成内容(AIGC)正快速崛起,从自动撰写新闻到创作文学作品,其应用广泛。本文以自动编写体育新闻为例,介绍如何运用自然语言处理和生成技术实现。随着深度学习的进步,如GANs和VAEs的应用,AIGC能创造更真实多样的内容。未来,AIGC或将变革信息消费方式,拓展至视频、音频及虚拟现实领域,同时也会引发伦理和法律议题,需谨慎应对。
73 0