使用Redis实现缓存穿透的解决方案

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 使用Redis实现缓存穿透的解决方案

使用Redis实现缓存穿透的解决方案

在缓存系统中,缓存穿透是指访问不存在的数据,导致请求直接穿透缓存层,直接访问数据库,造成数据库压力过大,甚至影响系统稳定性。本文将深入探讨如何使用Redis实现有效的缓存穿透解决方案。

1. 基本概念和问题背景

缓存穿透通常发生在恶意攻击或者大量请求查询不存在的数据时。例如,某些恶意用户不断查询不存在的用户信息,导致每次请求都要访问数据库,严重影响系统性能。为了解决这个问题,我们可以引入布隆过滤器和空值缓存等技术手段。

2. 使用布隆过滤器过滤无效请求

布隆过滤器是一种高效的数据结构,用于快速判断一个元素是否存在于集合中。在缓存层加入布隆过滤器,可以快速过滤掉不存在的请求,避免对数据库的直接查询。

package cn.juwatech.example;

import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import javax.annotation.PostConstruct;

@Service
public class BloomFilterService {
   

    @Autowired
    private RedisService redisService;

    private BloomFilter<String> bloomFilter;

    @PostConstruct
    public void init() {
   
        int expectedInsertions = 1000000;
        double fpp = 0.01; // False Positive Probability
        bloomFilter = BloomFilter.create(Funnels.stringFunnel(), expectedInsertions, fpp);
    }

    public boolean mightContain(String key) {
   
        return bloomFilter.mightContain(key);
    }

    public void put(String key) {
   
        bloomFilter.put(key);
    }
}

3. 空值缓存策略

当查询的数据确实不存在时,不直接访问数据库,而是将空结果设置到缓存中,设置合理的过期时间,避免空值缓存过久占用内存资源。

package cn.juwatech.example;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;

import java.util.concurrent.TimeUnit;

@Service
public class CacheService {
   

    @Autowired
    private RedisTemplate<String, Object> redisTemplate;

    public Object get(String key) {
   
        return redisTemplate.opsForValue().get(key);
    }

    public void set(String key, Object value, long timeout, TimeUnit unit) {
   
        redisTemplate.opsForValue().set(key, value, timeout, unit);
    }

    public void setNull(String key, long timeout, TimeUnit unit) {
   
        redisTemplate.opsForValue().set(key, "", timeout, unit); // Placeholder for null value
    }

    public boolean exists(String key) {
   
        return redisTemplate.hasKey(key);
    }
}

4. 实现缓存穿透解决方案

结合布隆过滤器和空值缓存策略,实现完整的缓存穿透解决方案。在查询前先通过布隆过滤器判断是否存在于缓存中,如果存在则直接返回缓存数据;如果不存在,则进行数据库查询,查询结果为空时设置空值缓存,并设置较短的过期时间,避免重复查询。

package cn.juwatech.example;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import java.util.concurrent.TimeUnit;

@Service
public class DataService {
   

    @Autowired
    private CacheService cacheService;

    @Autowired
    private DatabaseService databaseService;

    @Autowired
    private BloomFilterService bloomFilterService;

    public Object getData(String key) {
   
        if (bloomFilterService.mightContain(key)) {
   
            if (cacheService.exists(key)) {
   
                return cacheService.get(key);
            } else {
   
                Object data = databaseService.getData(key);
                if (data != null) {
   
                    cacheService.set(key, data, 10, TimeUnit.MINUTES); // Example: cache for 10 minutes
                    return data;
                } else {
   
                    cacheService.setNull(key, 1, TimeUnit.MINUTES); // Example: cache null value for 1 minute
                    return null;
                }
            }
        } else {
   
            return null; // Request not in bloom filter, likely invalid
        }
    }
}

通过以上实现,我们能够有效地解决缓存穿透问题,提升系统的性能和稳定性,确保对数据库的请求能够得到有效地缓存和利用。

相关文章
|
6月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
1月前
|
缓存 负载均衡 监控
135_负载均衡:Redis缓存 - 提高缓存命中率的配置与最佳实践
在现代大型语言模型(LLM)部署架构中,缓存系统扮演着至关重要的角色。随着LLM应用规模的不断扩大和用户需求的持续增长,如何构建高效、可靠的缓存架构成为系统性能优化的核心挑战。Redis作为业界领先的内存数据库,因其高性能、丰富的数据结构和灵活的配置选项,已成为LLM部署中首选的缓存解决方案。
|
2月前
|
存储 缓存 NoSQL
Redis专题-实战篇二-商户查询缓存
本文介绍了缓存的基本概念、应用场景及实现方式,涵盖Redis缓存设计、缓存更新策略、缓存穿透问题及其解决方案。重点讲解了缓存空对象与布隆过滤器的使用,并通过代码示例演示了商铺查询的缓存优化实践。
166 1
Redis专题-实战篇二-商户查询缓存
|
1月前
|
缓存 运维 监控
Redis 7.0 高性能缓存架构设计与优化
🌟蒋星熠Jaxonic,技术宇宙中的星际旅人。深耕Redis 7.0高性能缓存架构,探索函数化编程、多层缓存、集群优化与分片消息系统,用代码在二进制星河中谱写极客诗篇。
|
2月前
|
缓存 NoSQL 关系型数据库
Redis缓存和分布式锁
Redis 是一种高性能的键值存储系统,广泛用于缓存、消息队列和内存数据库。其典型应用包括缓解关系型数据库压力,通过缓存热点数据提高查询效率,支持高并发访问。此外,Redis 还可用于实现分布式锁,解决分布式系统中的资源竞争问题。文章还探讨了缓存的更新策略、缓存穿透与雪崩的解决方案,以及 Redlock 算法等关键技术。
|
6月前
|
缓存 NoSQL Java
Redis+Caffeine构建高性能二级缓存
大家好,我是摘星。今天为大家带来的是Redis+Caffeine构建高性能二级缓存,废话不多说直接开始~
901 0
|
6月前
|
消息中间件 缓存 NoSQL
基于Spring Data Redis与RabbitMQ实现字符串缓存和计数功能(数据同步)
总的来说,借助Spring Data Redis和RabbitMQ,我们可以轻松实现字符串缓存和计数的功能。而关键的部分不过是一些"厨房的套路",一旦你掌握了这些套路,那么你就像厨师一样可以准备出一道道饕餮美食了。通过这种方式促进数据处理效率无疑将大大提高我们的生产力。
228 32
|
6月前
|
缓存 NoSQL Java
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
157 5
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
|
8月前
|
缓存 NoSQL Java
Redis应用—8.相关的缓存框架
本文介绍了Ehcache和Guava Cache两个缓存框架及其使用方法,以及如何自定义缓存。主要内容包括:Ehcache缓存框架、Guava Cache缓存框架、自定义缓存。总结:Ehcache适合用作本地缓存或与Redis结合使用,Guava Cache则提供了更灵活的缓存管理和更高的并发性能。自定义缓存可以根据具体需求选择不同的数据结构和引用类型来实现特定的缓存策略。
527 16
Redis应用—8.相关的缓存框架
|
8月前
|
缓存 监控 NoSQL
Redis--缓存击穿、缓存穿透、缓存雪崩
缓存击穿、缓存穿透和缓存雪崩是Redis使用过程中可能遇到的常见问题。理解这些问题的成因并采取相应的解决措施,可以有效提升系统的稳定性和性能。在实际应用中,应根据具体场景,选择合适的解决方案,并持续监控和优化缓存策略,以应对不断变化的业务需求。
1674 29