网络通信系统的voronoi图显示与能耗分析matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 在MATLAB2022a中,该程序模拟了两层基站网络,使用泊松分布随机生成Macro和Micro基站,并构建Voronoi图。它计算每个用户的信号强度,选择最强连接,并分析SINR和数据速率。程序还涉及能耗计算,包括传输、接收、处理和空闲能耗的分析。Voronoi图帮助可视化网络连接和优化能源效率。

1.程序功能描述
两层基站(BS)组成整个通讯网络,第 1 层为 Macro 基站记为 ,第 2 层为 Micro 基站记为 ,均服从泊松分布,相互独立,在坐标为 10×10km 的面积内、按照泊松分布随机生成若干个点(随机抛洒两遍 nodes,两层叠加起来)。然后画成 voronoi 图: 也就是在相邻两个点(同种类的点)之间距离的二分之一处画一条线。同时分析网络系统的能耗。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpg
2.jpg
3.jpg

3.核心程序

            %计算每个用户的信号的强度
            for i = 1:Nu
                %针对Macro
                %选择最近的一个基站,计算对应的距离
                for j1 = 1:N1
                    dist_tmp1(j1) = sqrt((xu(i)-x1(j1))^2 + (yu(i)-y1(j1))^2);
                end
                dist1 = min(dist_tmp1);
                P1(i) = Pt1*h*DeltaB1*dist1^(-alpha1);

                %针对Micro
                %选择最近的一个基站,计算对应的距离
                for j2 = 1:N2
                    dist_tmp2(j2) = sqrt((xu(i)-x2(j2))^2 + (yu(i)-y2(j2))^2);
                end
                dist2 = min(dist_tmp2);
                P2(i) = Pt2*h*DeltaB2*dist2^(-alpha2);
                %选择较大的一个联结
                [V,I] = max([P1(i),P2(i)]);
                J(i)  = I; 
            end
            %计算得到的J为每个用户对应选择的基站标号
            J;

            %根据如下规则计算SINR
            %定义与 Macro层BS连接的用户集合
            U1 = find(J==1);
            %定义与 Micro层BS连接的用户集合
            U2 = find(J==2);


            %计算SINR1和RATE1
            %计算SINR2和RATE2
            SINR1   = zeros(1,Nu);
            SINR2   = zeros(1,Nu);
            RATE1   = zeros(1,Nu);
            RATE2   = zeros(1,Nu);
            DeltaT1 = zeros(1,Nu);
            DeltaT2 = zeros(1,Nu);

            for i = 1:Nu
                %计算SINR1和RATE1
                if J(i) == 1
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                   for j1 = 1:N1
                       dist_tmp1(j1) = sqrt((xu(i)-x1(j1))^2 + (yu(i)-y1(j1))^2);
                   end
                   for j2 = 1:N2
                       dist_tmp2(j2) = sqrt((xu(i)-x2(j2))^2 + (yu(i)-y2(j2))^2);
                   end       
                   [V1,I1]= min(dist_tmp1);
                   dist1  = V1;
                   FZ     = Pt1*h*dist1^(-alpha1); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   ind1   = 0;
                   tmps   = [];
                   for j1 = 1:N1
                       if (j1 < I1) | (j1 >I1)
                          ind1 = ind1 + 1;
                          tmps(ind1) = Pt1*h*dist_tmp1(j1)^(-alpha1); 
                       end
                   end
                   FM1   = sum(tmps); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   tmps  = [];
                   for j1 = 1:N2
                       tmps(j1) = Pt2*h*dist_tmp2(j1)^(-alpha2); 
                   end
                   FM2   = sum(tmps); 
                   SINR1(i)   = FZ/(FM1+FM2+10^(delta2/20)/1000);
                   RATE1(i)   = B*log2(1+SINR1(i));
                   DeltaT1(i) = epsl/RATE1(i);
                else
                   SINR1(i)   = 0;
                   RATE1(i)   = 0;
                   DeltaT1(i) = 0; 
                end


                %计算SINR2和RATE2
                if J(i) == 2
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                   for j1 = 1:N1
                       dist_tmp1(j1) = sqrt((xu(i)-x1(j1))^2 + (yu(i)-y1(j1))^2);
                   end
                   for j2 = 1:N2
                       dist_tmp2(j2) = sqrt((xu(i)-x2(j2))^2 + (yu(i)-y2(j2))^2);
                   end       
                   [V2,I2]= min(dist_tmp2);
                   dist2  = V2;
                   FZ     = Pt2*DeltaB2*h*dist2^(-alpha2); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   tmps   = [];
                   for j1 = 1:N1
                       tmps(j1) = Pt1*h*dist_tmp1(j1)^(-alpha1); 
                   end
                   FM1   = sum(tmps); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   tmps  = [];
                   ind2  = 0;
                   for j1 = 1:N2
                       if (j1 < I2) | (j1 >I2)
                          ind2 = ind2 + 1;
                          tmps(ind2) = Pt2*h*dist_tmp2(j1)^(-alpha2); 
                       end
                   end
                   FM2   = sum(tmps); 
                   SINR2(i)   = FZ/(FM1+FM2+10^(delta2/20)/1000);
                   RATE2(i)   = B*log2(1+SINR2(i));
                   DeltaT2(i) = epsl/RATE2(i); 
                else
                   SINR2(i)   = 0;
                   RATE2(i)   = 0;
                   DeltaT2(i) = 0; 
                end    
            end

            %计算E
            Pbs1 = zeros(1,Nu);
            Pm1  = zeros(1,Nu);
            Pbs2 = zeros(1,Nu);
            Pm2  = zeros(1,Nu); 
12_011m

4.本算法原理
网络通信系统的Voronoi图显示与能耗分析是一种结合网络通信和图形学的方法,用于研究网络中各个节点之间的连接关系和能量消耗情况。通过Voronoi图,我们可以直观地展示网络中各个节点的可达性和连接关系,同时分析网络的能耗分布和优化方法。

   Voronoi图,也称为泰森多边形,是一种基于点集的分割图形。在这个图中,每个点被表示为一个顶点,每个顶点周围区域内的其他点都距离该点最近。通过Voronoi图,我们可以将一个连续的平面分割为若干个不重叠的区域,使得每个区域都包含一个顶点。

   在网络通信系统中,我们可以将网络中的各个节点作为Voronoi图的顶点,节点之间的连接关系作为边。通过这种方式,我们可以将网络拓扑结构转化为图形结构,从而更直观地展示网络的连接关系。

   Voronoi图的生成主要依赖于计算几何中的一些基本算法。以下是生成Voronoi图的基本步骤:

确定顶点集:在网络通信系统中,顶点集可以由网络中的各个节点构成。
确定距离函数:距离函数用于计算任意两个节点之间的距离。在Voronoi图中,距离函数通常采用欧几里得距离或曼哈顿距离。
计算最小生成树:最小生成树是一种包含所有顶点且边权值最小的树形结构。在网络通信系统中,最小生成树可以用于表示网络中各个节点之间的连接关系。常用的最小生成树算法有Prim算法和Kruskal算法。
生成Voronoi图:根据最小生成树和距离函数,我们可以生成Voronoi图。在生成过程中,对于每个顶点,我们计算其周围区域内的其他顶点距离该点的距离,并将这些顶点连接起来形成边。最终得到的图形就是Voronoi图。
在网络通信系统中,能耗是一个重要的性能指标。能耗分析旨在研究网络中各个节点的能量消耗情况,以便进行优化和节能。在进行能耗分析时,我们可以考虑以下几个方面:

传输能耗:节点在传输数据时需要消耗能量。传输能耗与传输距离、传输速率以及传输功率等因素有关。一般来说,传输距离越远,传输速率越高,传输功率越大,则传输能耗也越大。
接收能耗:节点在接收数据时也需要消耗能量。接收能耗与接收速率、接收功率等因素有关。一般来说,接收速率越高,接收功率越大,则接收能耗也越大。
处理能耗:节点在处理数据时需要消耗能量。处理能耗与处理器的时钟频率、指令执行能耗等因素有关。一般来说,处理器的时钟频率越高,指令执行能耗越大,则处理能耗也越大。
空闲能耗:节点在空闲状态下也需要消耗能量。空闲能耗与节点的待机功耗等因素有关。一般来说,节点的待机功耗越大,则空闲能耗也越大。

相关文章
|
7天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
9天前
|
存储 安全 网络安全
网络安全法律框架:全球视角下的合规性分析
网络安全法律框架:全球视角下的合规性分析
20 1
|
18天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
11天前
|
边缘计算 5G 数据处理
5G网络能耗管理:绿色通信的实践
【10月更文挑战第30天】
31 0
|
18天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9-2):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
|
27天前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
57 0
|
27天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
1月前
|
安全 网络协议 物联网
物联网僵尸网络和 DDoS 攻击的 CERT 分析
物联网僵尸网络和 DDoS 攻击的 CERT 分析