网络通信系统的voronoi图显示与能耗分析matlab仿真

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 在MATLAB2022a中,该程序模拟了两层基站网络,使用泊松分布随机生成Macro和Micro基站,并构建Voronoi图。它计算每个用户的信号强度,选择最强连接,并分析SINR和数据速率。程序还涉及能耗计算,包括传输、接收、处理和空闲能耗的分析。Voronoi图帮助可视化网络连接和优化能源效率。

1.程序功能描述
两层基站(BS)组成整个通讯网络,第 1 层为 Macro 基站记为 ,第 2 层为 Micro 基站记为 ,均服从泊松分布,相互独立,在坐标为 10×10km 的面积内、按照泊松分布随机生成若干个点(随机抛洒两遍 nodes,两层叠加起来)。然后画成 voronoi 图: 也就是在相邻两个点(同种类的点)之间距离的二分之一处画一条线。同时分析网络系统的能耗。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpg
2.jpg
3.jpg

3.核心程序

            %计算每个用户的信号的强度
            for i = 1:Nu
                %针对Macro
                %选择最近的一个基站,计算对应的距离
                for j1 = 1:N1
                    dist_tmp1(j1) = sqrt((xu(i)-x1(j1))^2 + (yu(i)-y1(j1))^2);
                end
                dist1 = min(dist_tmp1);
                P1(i) = Pt1*h*DeltaB1*dist1^(-alpha1);

                %针对Micro
                %选择最近的一个基站,计算对应的距离
                for j2 = 1:N2
                    dist_tmp2(j2) = sqrt((xu(i)-x2(j2))^2 + (yu(i)-y2(j2))^2);
                end
                dist2 = min(dist_tmp2);
                P2(i) = Pt2*h*DeltaB2*dist2^(-alpha2);
                %选择较大的一个联结
                [V,I] = max([P1(i),P2(i)]);
                J(i)  = I; 
            end
            %计算得到的J为每个用户对应选择的基站标号
            J;

            %根据如下规则计算SINR
            %定义与 Macro层BS连接的用户集合
            U1 = find(J==1);
            %定义与 Micro层BS连接的用户集合
            U2 = find(J==2);


            %计算SINR1和RATE1
            %计算SINR2和RATE2
            SINR1   = zeros(1,Nu);
            SINR2   = zeros(1,Nu);
            RATE1   = zeros(1,Nu);
            RATE2   = zeros(1,Nu);
            DeltaT1 = zeros(1,Nu);
            DeltaT2 = zeros(1,Nu);

            for i = 1:Nu
                %计算SINR1和RATE1
                if J(i) == 1
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                   for j1 = 1:N1
                       dist_tmp1(j1) = sqrt((xu(i)-x1(j1))^2 + (yu(i)-y1(j1))^2);
                   end
                   for j2 = 1:N2
                       dist_tmp2(j2) = sqrt((xu(i)-x2(j2))^2 + (yu(i)-y2(j2))^2);
                   end       
                   [V1,I1]= min(dist_tmp1);
                   dist1  = V1;
                   FZ     = Pt1*h*dist1^(-alpha1); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   ind1   = 0;
                   tmps   = [];
                   for j1 = 1:N1
                       if (j1 < I1) | (j1 >I1)
                          ind1 = ind1 + 1;
                          tmps(ind1) = Pt1*h*dist_tmp1(j1)^(-alpha1); 
                       end
                   end
                   FM1   = sum(tmps); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   tmps  = [];
                   for j1 = 1:N2
                       tmps(j1) = Pt2*h*dist_tmp2(j1)^(-alpha2); 
                   end
                   FM2   = sum(tmps); 
                   SINR1(i)   = FZ/(FM1+FM2+10^(delta2/20)/1000);
                   RATE1(i)   = B*log2(1+SINR1(i));
                   DeltaT1(i) = epsl/RATE1(i);
                else
                   SINR1(i)   = 0;
                   RATE1(i)   = 0;
                   DeltaT1(i) = 0; 
                end


                %计算SINR2和RATE2
                if J(i) == 2
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                   for j1 = 1:N1
                       dist_tmp1(j1) = sqrt((xu(i)-x1(j1))^2 + (yu(i)-y1(j1))^2);
                   end
                   for j2 = 1:N2
                       dist_tmp2(j2) = sqrt((xu(i)-x2(j2))^2 + (yu(i)-y2(j2))^2);
                   end       
                   [V2,I2]= min(dist_tmp2);
                   dist2  = V2;
                   FZ     = Pt2*DeltaB2*h*dist2^(-alpha2); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   tmps   = [];
                   for j1 = 1:N1
                       tmps(j1) = Pt1*h*dist_tmp1(j1)^(-alpha1); 
                   end
                   FM1   = sum(tmps); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   tmps  = [];
                   ind2  = 0;
                   for j1 = 1:N2
                       if (j1 < I2) | (j1 >I2)
                          ind2 = ind2 + 1;
                          tmps(ind2) = Pt2*h*dist_tmp2(j1)^(-alpha2); 
                       end
                   end
                   FM2   = sum(tmps); 
                   SINR2(i)   = FZ/(FM1+FM2+10^(delta2/20)/1000);
                   RATE2(i)   = B*log2(1+SINR2(i));
                   DeltaT2(i) = epsl/RATE2(i); 
                else
                   SINR2(i)   = 0;
                   RATE2(i)   = 0;
                   DeltaT2(i) = 0; 
                end    
            end

            %计算E
            Pbs1 = zeros(1,Nu);
            Pm1  = zeros(1,Nu);
            Pbs2 = zeros(1,Nu);
            Pm2  = zeros(1,Nu); 
12_011m

4.本算法原理
网络通信系统的Voronoi图显示与能耗分析是一种结合网络通信和图形学的方法,用于研究网络中各个节点之间的连接关系和能量消耗情况。通过Voronoi图,我们可以直观地展示网络中各个节点的可达性和连接关系,同时分析网络的能耗分布和优化方法。

   Voronoi图,也称为泰森多边形,是一种基于点集的分割图形。在这个图中,每个点被表示为一个顶点,每个顶点周围区域内的其他点都距离该点最近。通过Voronoi图,我们可以将一个连续的平面分割为若干个不重叠的区域,使得每个区域都包含一个顶点。

   在网络通信系统中,我们可以将网络中的各个节点作为Voronoi图的顶点,节点之间的连接关系作为边。通过这种方式,我们可以将网络拓扑结构转化为图形结构,从而更直观地展示网络的连接关系。

   Voronoi图的生成主要依赖于计算几何中的一些基本算法。以下是生成Voronoi图的基本步骤:

确定顶点集:在网络通信系统中,顶点集可以由网络中的各个节点构成。
确定距离函数:距离函数用于计算任意两个节点之间的距离。在Voronoi图中,距离函数通常采用欧几里得距离或曼哈顿距离。
计算最小生成树:最小生成树是一种包含所有顶点且边权值最小的树形结构。在网络通信系统中,最小生成树可以用于表示网络中各个节点之间的连接关系。常用的最小生成树算法有Prim算法和Kruskal算法。
生成Voronoi图:根据最小生成树和距离函数,我们可以生成Voronoi图。在生成过程中,对于每个顶点,我们计算其周围区域内的其他顶点距离该点的距离,并将这些顶点连接起来形成边。最终得到的图形就是Voronoi图。
在网络通信系统中,能耗是一个重要的性能指标。能耗分析旨在研究网络中各个节点的能量消耗情况,以便进行优化和节能。在进行能耗分析时,我们可以考虑以下几个方面:

传输能耗:节点在传输数据时需要消耗能量。传输能耗与传输距离、传输速率以及传输功率等因素有关。一般来说,传输距离越远,传输速率越高,传输功率越大,则传输能耗也越大。
接收能耗:节点在接收数据时也需要消耗能量。接收能耗与接收速率、接收功率等因素有关。一般来说,接收速率越高,接收功率越大,则接收能耗也越大。
处理能耗:节点在处理数据时需要消耗能量。处理能耗与处理器的时钟频率、指令执行能耗等因素有关。一般来说,处理器的时钟频率越高,指令执行能耗越大,则处理能耗也越大。
空闲能耗:节点在空闲状态下也需要消耗能量。空闲能耗与节点的待机功耗等因素有关。一般来说,节点的待机功耗越大,则空闲能耗也越大。

相关文章
|
14天前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
133 73
|
3天前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
2天前
|
算法 数据安全/隐私保护
星座图整形技术在光纤通信中的matlab性能仿真,分别对比标准QAM,概率整形QAM以及几何整形QAM
本文介绍了现代光纤通信系统中的星座图整形技术,包括标准QAM、概率整形QAM和几何整形QAM三种方法,并对比了它们的原理及优缺点。MATLAB 2022a仿真结果显示了不同技术的效果。标准QAM实现简单但效率有限;概率整形QAM通过非均匀符号分布提高传输效率;几何整形QAM优化星座点布局,增强抗干扰能力。附带的核心程序代码展示了GMI计算过程。
10 0
|
14天前
|
算法
基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真
该程序基于蚁群优化算法(ACO)为无人机(UAV)规划最优巡检路线,将无人机视作“蚂蚁”,巡检点作为“食物源”,目标是最小化总距离、能耗或时间。使用MATLAB 2022a版本实现,通过迭代更新信息素浓度来优化路径。算法包括初始化信息素矩阵、蚂蚁移动与信息素更新,并在满足终止条件前不断迭代,最终输出最短路径及其长度。
|
5天前
|
存储 安全 网络安全
云计算与网络安全:技术融合下的信息安全新挑战
【9月更文挑战第29天】在数字化浪潮的推动下,云计算服务如雨后春笋般涌现,为各行各业提供了前所未有的便利和效率。然而,随着数据和服务的云端化,网络安全问题也日益凸显,成为制约云计算发展的关键因素之一。本文将从技术角度出发,探讨云计算环境下网络安全的重要性,分析云服务中存在的安全风险,并提出相应的防护措施。我们将通过实际案例,揭示如何在享受云计算带来的便捷的同时,确保数据的安全性和完整性。
|
5天前
|
SQL 安全 算法
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【9月更文挑战第29天】随着互联网的普及,网络安全问题日益严重。本文将介绍网络安全漏洞、加密技术以及安全意识等方面的内容,帮助读者了解网络安全的重要性,提高自身的网络安全意识。
|
5天前
|
存储 SQL 安全
网络安全与信息安全:构建安全防线的关键策略
本文深入探讨了网络安全与信息安全领域的核心要素,包括网络安全漏洞、加密技术以及安全意识的重要性。通过对这些关键领域的分析,旨在为读者提供一套综合性的防护策略,帮助企业和个人在日益复杂的网络环境中保障数据安全。
19 4
|
2天前
|
安全 网络协议 网络安全
网络安全与信息安全:漏洞、加密与意识的三重奏
【9月更文挑战第32天】在数字世界的交响乐中,网络安全是那不可或缺的乐章。本文将带您深入探索网络安全的三大主题:网络漏洞的识别与防范、加密技术的奥秘以及安全意识的重要性。通过深入浅出的方式,我们将一起揭开这些概念的神秘面纱,并学习如何在实际生活中应用它们来保护自己的数字足迹。让我们开始这场既刺激又富有教育意义的旅程,提升个人和组织的网络安全防御能力。
|
1天前
|
存储 安全 算法
网络安全与信息安全:漏洞、加密与意识的三维防线
【9月更文挑战第33天】在数字化浪潮中,网络安全与信息安全成为守护数据宝藏的坚固盾牌。本文将深入探讨网络防御的三大支柱:安全漏洞的识别与防范,加密技术的应用和原理,以及提升个人和组织的安全意识。通过这些知识的分享,我们旨在为读者提供一套全面的网络安全策略,确保数字资产的安全无虞。
|
4天前
|
SQL 安全 程序员
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【9月更文挑战第30天】在数字化时代,网络安全和信息安全已成为全球关注的焦点。本文将探讨网络安全漏洞、加密技术以及提升安全意识的重要性。我们将通过代码示例,深入理解网络安全的基础知识,包括常见的网络攻击手段、防御策略和加密技术的实际应用。同时,我们还将讨论如何提高个人和企业的安全意识,以应对日益复杂的网络安全威胁。
下一篇
无影云桌面