Python 使用 FastAPI 和 PostgreSQL 构建简单 API

本文涉及的产品
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
简介: 最近一年公司也在卷 LLM 的应用项目,所以我们也从 goper => Pythoner。 这一年使用最多的就是 Python 的 FastAPI 框架。下面一个简易项目让你快速玩转 Python API Web。API代表应用程序编程接口,是软件开发中最重要的概念之一。它允许程序通过发送和接收数据与其他服务进行交互。API Web 通信最广泛使用的标准之一是 REST,它依赖于JSON 格式或键值对,类似于 Python 的字典。如果想用 Python 构建一个,那么可以从几个框架中选择。Flask -RESTful、Django Rest Framework 和 FastAPI 是最受

最近一年公司也在卷 LLM 的应用项目,所以我们也从 goper => Pythoner。 这一年使用最多的就是 Python 的 FastAPI 框架。下面一个简易项目让你快速玩转 Python API Web。


API代表应用程序编程接口,是软件开发中最重要的概念之一。它允许程序通过发送和接收数据与其他服务进行交互。API Web 通信最广泛使用的标准之一是 REST,它依赖于JSON 格式或键值对,类似于 Python 的字典。


如果想用 Python 构建一个,那么可以从几个框架中选择。Flask -RESTful、Django Rest Framework 和 FastAPI 是最受欢迎的。


然而,FastAPI 专为快速 API 应用程序设计。

  • 自动文档:FastAPI 根据 OpenAPI 标准自动生成全面的文档,节省时间和精力。
  • 快捷、简便:专为高性能、高效执行而设计。
  • 数据验证FastAPI建立在 Pydantic 之上,提供了一批有用的功能,如数据验证和异步支持。


虽然Django Rest Framework在许多公司中也很常用,但让从FastAPI开始,了解它的好处。话虽如此,在简短的理论介绍之后,让我们继续编写 FastAPI 代码的第一步。

总体简介

端点

如前所述,API是不同服务和应用程序之间的一种通信方式。这种通信通常由服务器端基础设施和 API 的后端实现来促进。此后端的目的可能是提供对数据的访问,而无需直接连接到数据库,从而最大限度地减少对数据库的请求数量。

在 API 通信中,我们通常有一个指定的 URL,该端点可能在网站URL显示为/api/item/5。这种方法非常有利,因为它允许我们利用同一个URL从各种设备请求数据并接收相同的响应。

HTTP 方法

尽管我不想深入讨论理论概念,但了解使用 API 时不同方法之间的区别非常重要。让我们快速回顾一下最常用的方法:

  • GET — 用于检索数据
  • POST — 写入新数据
  • DELETE— 删除数据
  • PUT — 更新现有数据


虽然还有其他选项,但这些是我们应该从中入门的基本选项。POST 和 PUT 之间的区别很重要。两者都可用于添加数据,但 POST 用于写入新项目,而 PUT 用于使用较新的值更新现有数据。

构建你的第一个 API

运行第一个 FastAPI 服务器

首先,我们需要安装所有依赖项。至少需要将fastapi包与uvicorn服务器和一起安装pydantic。第一行应该安装所有列出的库。

pip install fastapi[all]
 pip install uvicorn
 pip install pydantic

现在,让我们使用带有必要方法和端点的装饰器创建一个基本的FastAPI应用程序。在此示例中,我们将使用 GET 方法检索数据。在本文中,我们不会讨论装饰器,因为它超出了 API 主题的范围。


在该函数之前,可能会看到下面一行代码,它负责将所有FastAPI进程添加到我们的方法中。

from fastapi import FastAPI
 
 app = FastAPI()
 
 @app.get('/') 
 def first_response():
     return {"response": "first"}

要查看响应,可以使用 uvicorn 运行服务器。默认情况下,服务器在端口 8000 上,并可通过 http://127.0.0.1:8000 访问。在开发过程中,可以使用 --reload 选项确保服务器对代码所做的任何更改都会自动重启。

uvicorn main:app
 uvicorn main:app --reload

通常我们可以使用 terminal 可以使用curl测试一下响应。

curl 127.0.0.1:8000
 #{"response": "first"}
 
 curl 127.0.0.1:8000 -X POST
 #{"detail":"Method Not Allowed"}

最后,我们可以使用 requests 库来访问我们的端点,并在 Python 中打印响应。

import requests
 
 print(requests.get('http://127.0.0.1:8000').json())
 #{'response': 'first'}

使用JSON文件中的数据

让我们继续下一步,开始处理一些实际数据。为了简化目前的情况,我们可以创建一个带有一些输入内容的 JSON 文件。


我们随便找一段 json 数据:

{
     "stocks": [
         {
             "symbol": "TSLA",
             "stockname": "Tesla Inc. Common Stock",
             "lastsale": "$235.45",
             "country": "United States",
             "ipoyear": 2010
         },
         {
             "symbol": "NVDA",
             "stockname": "NVIDIA Corporation Common Stock",
             "lastsale": "$477.76",
             "country": "United States",
             "ipoyear": 1999
         },
         {
             "symbol": "AMZN",
             "stockname": "Amazon.com Inc. Common Stock",
             "lastsale": "$146.74",
             "country": "United States",
             "ipoyear": 1997
         }
     ]
 }

现在我们可以修改我们的代码,不再检索所有项目,而是仅检索包含我们想要的特定符号的项目。也就是在后端执行过滤操作。为了实现这一点,我们执行以下操作:

  • 导入 pydantic 的模块。
  • 读取 JSON 文件并将其内容存储在字典中。
  • 使用过滤器,仅从该字典中检索所需项目。 如果未找到则引发带有 404 状态码(Not Found)的异常。


看起来很简单,但这是每个 FastAPI 应用程序的基础部分 — 模式、数据和方法。

from fastapi import FastAPI, HTTPException, Query
 from pydantic import BaseModel
 from typing import Optional
 import json
 
 app = FastAPI()
 
 class Stock(BaseModel):
     symbol: str
     stockname: str
     lastsale: str
     country: str
     ipoyear: Optional[int] = None
     
 with open('stocks.json', 'r') as f:
     stocks = json.load(f)['stocks']
 
 @app.get('/stock/{stock_symbol}', status_code=200)
 def get_stock(stock_symbol: str) -> Stock:
     stock = [stock for stock in stocks if stock['symbol'] == stock_symbol]
     if len(stock) == 0:
         raise HTTPException(
             status_code=404, detail=f"No stock {stock_symbol} found."
          )
 
     return stock[0]

当然,现在我们需要更改获数据请求的 url。

import requests
 
 print(requests.get('http://127.0.0.1:8000/stock/AMZN').json())

如上面所述,我们的文档现在应该是可用的。可以通过在浏览器的地址栏中输入http://127.0.0.1:8000/docs 来访问它。


FastAPI 内置了 OpenAPI 的文档系统,可基于我们的代码生成标准 API 文档。


随着我们继续添加更多方法,可以轻松地导航到同一位置找到它们所有。这份文档对刚开始使用 API 的人尤其有帮助。

在我们的代码中确定了 Pydantic 模型之后,现在我们可以确定输出响应的模式。这也是更好地理解各种 API 方法及其返回内容的一个更好的方式。

链接 Postgres 数据库

过去,我们只使用本地文件。然而,在大多数情况下将需要在后端使用数据库。为了实现这一点,我们将连接PostgreSQL数据库,并尝试在我们的GET方法中使用它。这是一个简单的SELECT语句。但是我们需要正确识别所有内容以供FastAPI使用。


这个过程涉及到 SQLAlchem 库,它是 Python 中最流行的用于对象关系映射(ORM)操作的包之一。


为了将数据存储在单独的文件中,创建一个名为config.py的文件,并添加以下代码。下面是示例代码:

from pydantic_settings import BaseSettings
class Settings(BaseSettings):
    sqlalchemy_string: str = "postgresql://user:passwordp@host/db"
    
settings = Settings()

让我们通过将这部分内容结构化到 database.py 文件中来创建引擎并为 FastAPI 会话准备数据库。我们使用 config.py 文件中的设置。

from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
from config import settings
engine = create_engine(
    settings.sqlalchemy_string, connect_args={'sslmode':'require'}
)
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
Base = declarative_base()

接下来,我们需要将模型与数据库中相关的表格进行关联。我们具体处理数据的表格,并且将为其使用一个简单的模型。我们会使用基本模型。

from sqlalchemy import Column, Integer, String, Float, BigInteger
from database import Base
class Stock(Base):
    __tablename__ = "nasdaq_stocks"
    
    symbol = Column(String, primary_key=True)
    stockname = Column(String)
    lastsale = Column(String)
    netchange = Column(Float)
    percentchange = Column(String)
    marketcap = Column(BigInteger)
    country = Column(String, nullable=True)
    ipoyear = Column(Integer, nullable=True)
    volume = Column(Integer)
    sector = Column(String, nullable=True)
    industry = Column(String, nullable=True)

我们将 Pydantic 模型存储在单独的文件中。让我们将文件命名为 schemas.py,并在其中添加相关模型。正确配置 orm_mode,因为我们正在使用 SQLAlchemy 数据库。

from pydantic import BaseModel
from typing import Optional
class StockBase(BaseModel):
    symbol: str
    stockname: str
    lastsale: str
    country: str
    ipoyear: Optional[int] = None
    volume: int
    
class StockCreate(StockBase):
    pass
class Stock(StockBase):
    
    class Config:
        orm_mode = True

我们必须在数据库指定 CRUD(Create, Read, Update, Delete) 操作的代码。以后在主脚本中仅使用 FastAPI 应用程序中的函数会更方便。 对于我们基本的 GET 方法,仅需要通过符号进行简单的过滤查询即可, 下面是一个最基础的 crud.py 文件示例。

from sqlalchemy.orm import Session
import models, schemas
def get_stock(db: Session, symbol: str):
    return db.query(models.Stock).filter(models.Stock.symbol == symbol).first()

我们已经完成了实现 API 所需的所有准备工作。由于正在操作数据库,需要在脚本中包含一些额外的细节。


get_db 函数负责与数据库建立连接,并已将其包含在 Depends FastAPI 类中。下面是可运行代码的最终示例。

from fastapi import FastAPI, HTTPException, Query, Depends
from sqlalchemy.orm import Session
import crud, models, schemas
from database import SessionLocal, engine
models.Base.metadata.create_all(bind=engine)
app = FastAPI(
    title="NASDAQ stocks",
    description="Start using FastAPI in development",
    version="0.1"
)
# Dependency
def get_db():
    db = SessionLocal()
    try:
        yield db
    finally:
        db.close() 
@app.get('/stock/{symbol}', response_model=schemas.Stock, status_code=200)
def get_stock(symbol: str, db: Session = Depends(get_db)) -> models.Stock:
    db_stock = crud.get_stock(db, symbol=symbol)
    if db_stock is None:
        raise HTTPException(
            status_code=404, detail=f"No stock {symbol} found."
        )
    return db_stock

虽然没有明显变化,但我们现在可以搜索整个数据库,而不仅仅是来自 JSON 文件中的数据。修改输出也很简单,因为我们可以在 Pydantic 模型中添加或删除字段。

import requests
print(requests.get('http://127.0.0.1:8000/stock/AAL').json())

ORM 与市场上提供的各种数据库选项无缝配合,实现高效集成不需要进行任何修改。可以参考关于如何在 FastAPI 中使用 SQL 数据库的相关文档。

总结

在本文中,我们描述了 FastAPI 及其简化 REST API 实现的能力。 与其他有用的 Python 依赖项一起,FastAPI 提供许多必要的功能:

  • Pydantic 使用Pydantic 对数据进行验证。
  • SQLAlchemy 使用SQLAlchemy ORM 对数据进行数据库操作。


FastAPI 不仅局限于使用 GET 方法返回数据作为响应。它提供了完整的 REST API 功能,包括POST、PUT 和 DELETE 等其他有价值的方法。

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
11天前
|
Shell 程序员 开发者
轻松搞定在Python中构建虚拟环境
本教程教你如何使用业界公认的最佳实践,创建一个完全工作的Python开发环境。虚拟环境通过隔离依赖项,避免项目间的冲突,并允许你轻松管理包版本。我们将使用Python 3的内置`venv`模块来创建和激活虚拟环境,确保不同项目能独立运行,不会相互干扰。此外,还将介绍如何检查Python版本、激活和停用虚拟环境,以及使用`requirements.txt`文件共享依赖项。 通过本教程,你将学会: - 创建和管理虚拟环境 - 避免依赖性冲突 - 部署Python应用到服务器 适合新手和希望提升开发环境管理能力的开发者。
|
24天前
|
安全 API 数据安全/隐私保护
自学记录HarmonyOS Next DRM API 13:构建安全的数字内容保护系统
在完成HarmonyOS Camera API开发后,我深入研究了数字版权管理(DRM)技术。最新DRM API 13提供了强大的工具,用于保护数字内容的安全传输和使用。通过学习该API的核心功能,如获取许可证、解密内容和管理权限,我实现了一个简单的数字视频保护系统。该系统包括初始化DRM模块、获取许可证、解密视频并播放。此外,我还配置了开发环境并实现了界面布局。未来,随着数字版权保护需求的增加,DRM技术将更加重要。如果你对这一领域感兴趣,欢迎一起探索和进步。
85 18
|
13天前
|
数据采集 供应链 API
Python爬虫与1688图片搜索API接口:深度解析与显著收益
在电子商务领域,数据是驱动业务决策的核心。阿里巴巴旗下的1688平台作为全球领先的B2B市场,提供了丰富的API接口,特别是图片搜索API(`item_search_img`),允许开发者通过上传图片搜索相似商品。本文介绍如何结合Python爬虫技术高效利用该接口,提升搜索效率和用户体验,助力企业实现自动化商品搜索、库存管理优化、竞品监控与定价策略调整等,显著提高运营效率和市场竞争力。
45 3
|
21天前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
42 10
|
1月前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
12天前
|
数据采集 JavaScript 前端开发
京东商品详情 API 接口指南(Python 篇)
本简介介绍如何使用Python抓取京东商品详情数据。首先,需搭建开发环境并安装必要的库(如requests、BeautifulSoup和lxml),了解京东反爬虫机制,确定商品ID获取方式。通过发送HTTP请求并解析HTML,可提取价格、优惠券、视频链接等信息。此方法适用于电商数据分析、竞品分析、购物助手及内容创作等场景,帮助用户做出更明智的购买决策,优化营销策略。
|
1月前
|
存储 API 数据库
使用Python开发获取商品销量详情API接口
本文介绍了使用Python开发获取商品销量详情的API接口方法,涵盖API接口概述、技术选型(Flask与FastAPI)、环境准备、API接口创建及调用淘宝开放平台API等内容。通过示例代码,详细说明了如何构建和调用API,以及开发过程中需要注意的事项,如数据库连接、API权限、错误处理、安全性和性能优化等。
113 5
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
90 3
|
8天前
|
JSON 前端开发 搜索推荐
关于商品详情 API 接口 JSON 格式返回数据解析的示例
本文介绍商品详情API接口返回的JSON数据解析。最外层为`product`对象,包含商品基本信息(如id、name、price)、分类信息(category)、图片(images)、属性(attributes)、用户评价(reviews)、库存(stock)和卖家信息(seller)。每个字段详细描述了商品的不同方面,帮助开发者准确提取和展示数据。具体结构和字段含义需结合实际业务需求和API文档理解。
|
2天前
|
JSON 搜索推荐 API
京东店铺所有商品接口系列(京东 API)
本文介绍如何使用Python调用京东API获取店铺商品信息。前期需搭建Python环境,安装`requests`库并熟悉`json`库的使用。接口采用POST请求,参数包括`app_key`、`method`、`timestamp`、`v`、`sign`和业务参数`360buy_param_json`。通过示例代码展示如何生成签名并发送请求。应用场景涵盖店铺管理、竞品分析、数据统计及商品推荐系统,帮助商家优化运营和提升竞争力。
34 23

热门文章

最新文章