【C++高阶】探索STL的瑰宝 map与set:高效数据结构的奥秘与技巧

简介: 【C++高阶】探索STL的瑰宝 map与set:高效数据结构的奥秘与技巧

前言: 在编程的世界里,数据结构的选择往往决定了程序的效率和稳定性。而在C++的STL(Standard Template Library)库中,map和set无疑是两颗璀璨的瑰宝。它们以其独特的数据存储和检索方式,为我们提供了高效且有序的键值对存储和集合管理方案

mapset不仅拥有自动排序的特性,还提供了丰富的成员函数和迭代器接口,使得我们可以轻松地对其进行操作和管理。无论是在算法竞赛中,还是在日常编程中,它们都是不可或缺的工具

我们将从map和set的定义和特性开始,介绍它们的基本用法和常用成员函数。接着,我们将通过示例代码,展示如何在实际编程中使用它们。同时,我们还将探讨一些常见的错误用法和注意事项,帮助你避免在使用map和set时遇到坑

让我们一起踏上学习 mapset 的旅程,探索它带来的无尽可能!


📒1. 关联式容器

在初阶阶段,我们已经接触过STL中的部分容器,比如:vector、list、deque、
forward_list(C++11)等
,这些容器统称为序列式容器,因为其底层为线性序列的数据结构,里面存储的是元素本身

关联式容器(Associative Containers) 是C++标准模板库(STL)中的一类重要容器,主要用于存储和快速检索键值对(key-value pairs)形式的数据。这类容器与序列式容器(如vector、deque、list)的主要区别在于,关联式容器中的元素是按照特定的排序准则(通常是键的大小)进行排序的,从而允许通过键来快速查找、插入和删除元素

关联式容器: 也是用来存储数据的,与序列式容器不同的是,其里面存储的是<key, value>结构的键值对,在数据检索时比序列式容器效率更高


📙2. 键值对

概念: 用来表示具有一一对应关系的一种结构,该结构中一般只包含两个成员变量key和value,key代表键值,value表示与key对应的信息,比如我们上一篇所提到的kv模型结构 存在对应关系

SGI-STL中关于键值对的定义:(示例)

template <class T1, class T2>
struct pair
{
  typedef T1 first_type;
  typedef T2 second_type;
  T1 first;
  T2 second;
  
  pair(): first(T1()), second(T2())
  {}
  
  pair(const T1& a, const T2& b)
  : first(a)
  , second(b)
  {}
};

📕3. 树形结构的关联式容器

根据应用场景的不桶,STL总共实现了两种不同结构的管理式容器:树型结构与哈希结构。

  • 树型结构的关联式容器主要有四种:map、set、multimap、multiset
  • 共同点是:使用平衡搜索树(即红黑树)作为其底层结果,容器中的元素是一个有序的序列

关联式容器是C++ STL中一类重要的容器,它们通过键值对的形式存储数据,并支持快速的查找、插入和删除操作。常见的关联式容器包括set、multiset、map和multimap等,它们在不同的应用场景下提供了高效的解决方案


📜4. set 与 multiset

🎩set的概念

概念: set 是 C++ 标准模板库 (STL) 中的一个关联式容器,它包含的元素是唯一的,且默认情况下元素会按照升序排序。set 的内部实现通常使用红黑树来保持其有序性和唯一性

  • set是按照一定次序存储元素的容器
  • 在set中,元素的value也标识它(value就是key,类型为T),并且每个value必须是唯一的
  • set中的元素不能在容器中修改(元素总是const),但是可以从容器中插入或删除它们
  • 在内部,set中的元素总是按照其内部比较对象(类型比较)所指示的特定严格弱排序准则进行排序
  • set容器通过key访问单个元素的速度通常比unordered_set容器慢,但它们允许根据顺序对子集进行直接迭代
  • set在底层是用二叉搜索树(红黑树)实现的

特征:

  • 与map/multimap不同,map/multimap中存储的是真正的键值对<key, value>,set中只放value,但在底层实际存放的是由<value, value>构成的键值对
  • set中插入元素时,只需要插入value即可,不需要构造键值对
  • set中的元素不可以重复(因此可以使用set进行去重)
  • 使用set的迭代器遍历set中的元素,可以得到有序序列
  • set中的元素默认按照小于来比较
  • set中查找某个元素,时间复杂度为:l o g 2 n log_2 nlog2n
  • set中的元素不允许修改
  • set中的底层使用二叉搜索树(红黑树)来实现

🎈multiset的概念

概念:multiset 是 C++ 标准库 中的一个容器,它允许存储重复的元素。与 set 不同,set 中的元素是唯一的,而 multiset 中的元素可以重复

它与set唯一不同的一点就是 multiset 中的元素可以重复

简单演示一下差别

int main()
{
  int arr[] = { 2, 1, 3, 9, 6, 0, 5, 8, 4, 7 };
  // 注意:multiset在底层实际存储的是<int, int>的键值对
  multiset<int> s(arr, arr + sizeof(arr)/sizeof(arr[0]));
  for (auto& e : s)
  {
    cout << e << " ";
  }
  cout << endl;
  return 0;
}

🧩set的使用

🌈set的模板参数列表

  • T: set中存放元素的类型,实际在底层存储<value, value>的键值对
  • Compare:set中元素默认按照小于来比较
  • Alloc:set中元素空间的管理方式,使用STL提供的空间配置器管理

🌞set的构造

函数声明 功能介绍
set (const Compare& comp = Compare(), const Allocator&= Allocator() ) 构造空的set
set (InputIterator first, InputIterator last, constCompare& comp = Compare(), const Allocator& =Allocator() ) 用[first, last)区间中的元素构造set
set ( const set<Key,Compare,Allocator>& x) set的拷贝构造

构造代码实现(示例):

int main()
{
  vector<int> v = { 1,5,7,6,3,4,5 };
  set<int> s1; // 构造空的set
  
  // 用[first, last)区间中的元素构造set
  set<int> s2(v.begin(),v.end()); 
  
  set<int> s3(s2); // set的拷贝构造
  
  return 0;
}

🌙set的迭代器

set的迭代器有点多,其中包括正向迭代器,反向迭代器;const迭代器与非const迭代器

函数声明 功能介绍
iterator begin() 返回set中起始位置元素的迭代器
iterator end() 返回set中最后一个元素后面的迭代器
const_iterator cbegin() const 返回set中起始位置元素的const迭代器
const_iterator cend() const 返回set中最后一个元素后面的const迭代器
reverse_iterator rbegin() 返回set第一个元素的反向迭代器,即end
reverse_iterator rend() 返回set最后一个元素下一个位置的反向迭代器,即rbegin
const_reverse_iterator crbegin() const 返回set第一个元素的反向const迭代器,即cend
const_reverse_iterator crend() const 返回set最后一个元素下一个位置的反向const迭代器,即crbegin

因而有迭代器的存在,set可以跟方便的遍历整个结构

迭代器实现(示例):

int main()
{
  vector<int> v = { 1,5,7,6,3,4,5 };
  set<int> s1;
  set<int> s2(v.begin(),v.end());
  set<int> s3(s2);
  // 输出s2的遍历结果
  auto it = s2.begin();
  while (it != s2.end())
  {
    cout << *it << " "; // 1 3 4 5 6 7
    it++;
  }
  return 0;
}

⭐set的其他函数操作

函数声明 功能介绍
pair<iterator,bool> insert (const value_type& x ) 在set中插入元素x,实际插入的是<x, x>构成的键值对,如果插入成功,返回<该元素在set中的位置,true>,如果插入失败,说明x在set中已经存在,返回<x在set中的位置,false>
void erase ( iterator position ) 删除set中position位置上的元素
size_type erase ( const key_type& x ) 删除set中值为x的元素,返回删除的元素的个数
void erase ( iterator first,iterator last ) 删除set中[first, last)区间中的元素
void swap (set<Key,Compare,Allocator>&st ); 交换set中的元素
void clear ( ) 将set中的元素清空
iterator find ( const key_type& x ) const 返回set中值为x的元素的位置
size_type count ( const key_type& x ) const 返回set中值为x的元素的个数

在set的这些函数中,用的最多的就是insert,find,erase

首先insert一般是直接插入元素,或者是一段迭代器区间,在直接插入一个元素时,它的返回值是pair

  • 当插入成功时,first返回新位置的迭代器,然后second返回true;
  • 当set中已经存在该元素时,插入失败,first返回已有元素位置的迭代器,然后second返回false

  • find不用多说,在set中是找到则返回该位置迭代器
  • multiset中是返回第一个该元素位置的迭代器

  • erase在set中主要的作用就是删除该迭代器位置的元素,或者删除迭代器区间
  • 第二种用法是针对multiset的,multiset可以有重复元素,因此可以返回删除元素的个数

这里介绍两个没有见过的函数upper_bound,lower_bound

  • lower_bound:返回>=该值元素位置的迭代器
  • upper_bound:返回>该值元素位置的迭代器

这两个函数通常可以和erase结合使用删除一段迭代器区间


📚5. map 与 multimap

🎩map的概念

概念: map 是 C++ 标准库中的一个关联容器,它存储的元素都是键值对(key-value pairs),并且键(key)是唯一的。在map中,键值key通常用于排序和惟一地标识元素,而值value中存储与此键值key关联的内容。键值key和值value的类型可能不同,并且在map的内部,key与value通过成员类型value_type绑定在一起,为其取别名称为pair

typedef pair<const key, T> value_type;
  • map支持下标访问符,即在[]中放入key,就可以找到与key对应的value
  • map通常被实现为二叉搜索树(更准确的说:平衡二叉搜索树(红黑树))

🎈multimap的概念

概念: multimap 是 C++ 标准库 中的一个关联容器,它允许存储具有相同键的多个值。与 map 不同,map 中的键是唯一的,而 multimap 中的键可以重复

multimap中的接口可以参考map,功能都是类似的。

注意:

  • multimap中的key是可以重复的
  • multimap中的元素默认将key按照小于来比较
  • multimap中没有重载operator[]操作

🧩map的使用

🌈map的模板参数说明

  • key: 键值对中key的类型
  • T: 键值对中value的类型
  • Compare: 比较器的类型,默认按小于比较

🌞map的构造

函数声明 功能介绍
map() 构造一个空的map
int main()
{
  map<string,string>(); // 构造一个空的map
  return 0;
}

🌙map的迭代器

函数声明 功能介绍
begin()和end() begin:首元素的位置,end最后一个元素的下一个位置
cbegin()和cend() 与begin和end意义相同,但cbegin和cend所指向的元素不能修改
rbegin()和rend() 反向迭代器,rbegin在end位置,rend在begin位置,其++和–操作与begin和end操作移动相反
crbegin()和crend() 与rbegin和rend位置相同,操作相同,但crbegin和crend所指向的元素不能修改

⭐map的其他函数操作

函数声明 功能简介
pair<iterator,bool> insert (const value_type& x ) 在map中插入键值对x,注意x是一个键值对,返回值也是键值对:iterator代表新插入元素的位置,bool代表释放插入成功
size_type erase ( constkey_type& x ) 删除键值为x的元素
void erase ( iterator first,iterator last ) 删除[first, last)区间中的元素
iterator find ( const key_type& x) 在map中插入key为x的元素,找到返回该元素的位置的迭代器,否则返回end
const_iterator find ( const key_type& x ) const 在map中插入key为x的元素,找到返回该元素的位置的const迭代器,否则返回cend
mapped_type& operator[ ] (constkey_type& k) 返回去key对应的value

insert

insert插入中,所需要的元素类型是value_type - > pair

map的成员类型

pair可以支持带参构造,无参构造和拷贝构造

map插入代码演示:

int main()
{
  map<string,string> d;
  d.insert(pair<string, string>("insert", "插入"));
  d.insert(pair<const char*, const char*>("find", "查找"));
  return 0;
}

而一般我们并不会这没写,因为有make_pair的存在,我们往往使用make_pair

make_pair是一个函数模板,他可以自己推演类型

int main()
{
  map<string,string> d;
  d.insert(make_pair("erase", "删除"));
  return 0;
}

operator[ ]

insert:插入成功 pair<新插入key所在节点的iterator, true>插入失败 pair<已经存在的key所在节点的iterator,false>

在使用operator[ ]时,它会自动插入一个元素,在插入成功时,返回该位置的second(默认为0),在插入失败时,它就会返回已有位置的second


📖6. 总结拓展

💧在实际中的应用

这里推荐两个题目让大家巩固set与map

前K个高频单词

两个数组的交集


🔥总结

随着我们深入探讨STL(Standard Template Library)中的map和set,我们不难发现,这两个容器类型在C++编程中扮演着举足轻重的角色。它们不仅提供了高效的数据存储和检索机制,还通过其独特的性质解决了许多实际问题

在学习的过程中,我们领略了map如何以键值对的形式存储数据,并通过键来快速检索值。而set则以其独特的元素唯一性特点,为我们提供了一种确保集合中元素不重复的方法,然而学习之路永无止境。对于mapset的理解和应用,仅仅停留在基本的使用层面是远远不够的。我们需要进一步探索它们的高级用法

学习STL中的容器并不仅仅是为了掌握它们的使用方法。更重要的是,我们要学会如何根据问题的需求选择合适的容器类型,以及如何优化我们的代码以提高程序的性能和可维护性。在这个过程中,我们将会逐渐领悟到编程的精髓和乐趣,让我们一起在学习的道路上不断前行!


目录
相关文章
|
7月前
|
编译器 C++ 容器
【c++丨STL】基于红黑树模拟实现set和map(附源码)
本文基于红黑树的实现,模拟了STL中的`set`和`map`容器。通过封装同一棵红黑树并进行适配修改,实现了两种容器的功能。主要步骤包括:1) 修改红黑树节点结构以支持不同数据类型;2) 使用仿函数适配键值比较逻辑;3) 实现双向迭代器支持遍历操作;4) 封装`insert`、`find`等接口,并为`map`实现`operator[]`。最终,通过测试代码验证了功能的正确性。此实现减少了代码冗余,展示了模板与仿函数的强大灵活性。
193 2
|
3月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
103 0
|
7月前
|
存储 算法 C++
【c++丨STL】map/multimap的使用
本文详细介绍了STL关联式容器中的`map`和`multimap`的使用方法。`map`基于红黑树实现,内部元素按键自动升序排列,存储键值对,支持通过键访问或修改值;而`multimap`允许存在重复键。文章从构造函数、迭代器、容量接口、元素访问接口、增删操作到其他操作接口全面解析了`map`的功能,并通过实例演示了如何用`map`统计字符串数组中各元素的出现次数。最后对比了`map`与`set`的区别,强调了`map`在处理键值关系时的优势。
369 73
|
9月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
365 77
|
9月前
|
存储 C++
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
【数据结构——树】哈夫曼树(头歌实践教学平台习题)【合集】目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:任务描述 本关任务:编写一个程序构建哈夫曼树和生成哈夫曼编码。 相关知识 为了完成本关任务,你需要掌握: 1.如何构建哈夫曼树, 2.如何生成哈夫曼编码。 测试说明 平台会对你编写的代码进行测试: 测试输入: 1192677541518462450242195190181174157138124123 (用户分别输入所列单词的频度) 预
217 14
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
|
9月前
|
存储 C++ 索引
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
【数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】初始化队列、销毁队列、判断队列是否为空、进队列、出队列等。本关任务:编写一个程序实现环形队列的基本运算。(6)出队列序列:yzopq2*(5)依次进队列元素:opq2*(6)出队列序列:bcdef。(2)依次进队列元素:abc。(5)依次进队列元素:def。(2)依次进队列元素:xyz。开始你的任务吧,祝你成功!(4)出队一个元素a。(4)出队一个元素x。
292 13
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
|
9月前
|
算法 C++
【C++数据结构——查找】二叉排序树(头歌实践教学平台习题)【合集】
【数据结构——查找】二叉排序树(头歌实践教学平台习题)【合集】 目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果: 任务描述 本关任务:实现二叉排序树的基本算法。 相关知识 为了完成本关任务,你需要掌握:二叉树的创建、查找和删除算法。具体如下: (1)由关键字序列(4,9,0,1,8,6,3,5,2,7)创建一棵二叉排序树bt并以括号表示法输出。 (2)判断bt是否为一棵二叉排序树。 (3)采用递归方法查找关键字为6的结点,并输出其查找路径。 (4)分别删除bt中关键
217 11
【C++数据结构——查找】二叉排序树(头歌实践教学平台习题)【合集】
|
9月前
|
存储 人工智能 算法
【C++数据结构——图】最短路径(头歌教学实验平台习题) 【合集】
任务描述 本关任务:编写一个程序,利用Dijkstra算法,实现带权有向图的最短路径。 相关知识 为了完成本关任务,你需要掌握:Dijkst本关任务:编写一个程序,利用Dijkstra算法,实现带权有向图的最短路径。为了完成本关任务,你需要掌握:Dijkstra算法。带权有向图:该图对应的二维数组如下所示:Dijkstra算法:Dijkstra算法是指给定一个带权有向图G与源点v,求从v到G中其他顶点的最短路径。Dijkstra算法的具体步骤如下:(1)初始时,S只包含源点,即S={v},v的距离为0。
129 15
|
9月前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
196 12
|
9月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
171 10