ACL 2024 | CoCA:自注意力的缺陷与改进

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: CodeFuse团队从一个全新的视角,剖析了传统的 Transformer架构在长文本推理的糟糕表现,并给出了相应的解决方案

近年来,在大语言模型(LLM)的反复刷屏过程中,作为其内核的 Transformer 始终是绝对的主角。然而,随着业务落地的诉求逐渐强烈,有些原本不被过多关注的特性,也开始成为焦点。例如:在 Transformer 诞生之初,被视为天然具备的长度外推能力,随着相关研究的深入,人们发现,传统的 Transformer 架构在训练长度之外无一例外表现出糟糕的推理性能。

在本文中,作者从一个全新的视角,剖析了造成这种糟糕表现的可能原因,并给出了相应的解决方案。文章主要聚焦于 Self-Attention (Vaswani et al., 2017) 与 RoPE (Su et al., 2021) 的碰撞,后者是近年较多开源模型所采用的位置编码方式,例如:LLaMA (Touvron et al., 2023a) 和 Qwen (Bai et al., 2023)。

论文已被ACL 2024接收,技术细节可以查看预印版本:https://arxiv.org/abs/2309.08646

1.png

引言:

在自注意力 (Vaswani et al., 2017) 诞生之初,长度外推被认为是一种理所当然的能力。然而,随着实际应用的不断验证,这在事实上是有难度的,进而产生了一系列相关的优化工作。

现有工作通常聚焦于2个方向:注意力模块和位置编码,并有一系列优秀的工作产生。如:Longformer (Beltagy et al., 2020)、StreamingLLM (Xiao et al., 2023)、LM-Infinite (Han et al., 2023)、Alibi (Press et al., 2021)、Position Interpolation (PI) (Chen et al., 2023)、NTK-aware Scaled RoPE (bloc97, 2023)、CLEX (Chen et al., 2024) 等。

本文从一个全新的视角,揭示了自注意力与位置编码之间的内在联系(尤其是如今广泛应用的RoPE)。自注意力之中,查询和键之间天然存在的夹角,将位置编码引入了意料之外的困境,尤其是对具有关键信息的邻近位置的估计,存在不符合预期的异常行为。文章以此为切入,提出了相应的解决方案。

主要贡献如下:

  • 揭示了自注意力与位置编码之间的一种异常行为
  • 提出了 Collinear Constrained Attention (CoCA) 以解决上述问题
  • 实验表明 CoCA 在长上下文处理能力比常规自注意力具有显著优势
  • 开源了一份 CoCA 高效实现,不会增加现有计算和空间复杂度

2.png

Fig. 1. CoCA model architecture.

01-背景

旋转位置编码

理论完备性和简洁的实现,使 RoPE 成为了多数开源模型的选择。RoPE 通过旋转矩阵来编码每一个 Token 的位置信息,并利用查询和键的旋转复合,来实现相对位置的表达。

3.png

Fig. 2. rotary position embedding.(Su et al., 2021)

异常行为

在 Transformer 模型中,核心思想是计算 query 和 key 之间的关系。注意力机制使用这些关系来决定模型应该“关注”输入序列中的哪些部分。而 RoPE 利用旋转矩阵来编码位置信息的过程中,存在以下潜在的异常行为,如图 3 所示:

4.png

Fig. 3. Anomalous Behavior between RoPE and Attention Matrices.

情况(b)和(c):这是符合预期的行为,因为 query 和 key 之间注意力得分随着 m 和 n 的距离变大而逐渐减小,符合“近大远小”的先验假设。

情况(a)和(d):这是发生异常的行为,因为在最邻近的 Token 处,注意力得分预期之外的衰减,模型为了补偿这种衰减,必须在训练阶段给邻近 Token 补偿额外的增益,进而在长度外推过程中产生训练/推理的不一致。

02-CoCA实现

共线约束

基于上述观察,一个很自然的想法是让 Self-Attention 中的query和key初始夹角为0,这是论文中共线约束(Collinear Constrained Attention)的由来。

详细的推导和公式,这里不进行一一展开,读者可以阅读原文进行深入理解,这里只给出核心公式:

5.png

与原始的 Self-Attention 和 RoPE 相比,上述公式表达了CoCA 的核心:即在第 m 个 query 和第 n 个 key 之间建立联系,使它们的任意一个二维切片共线,从而保证 query 和 key 初始夹角为 0 。

松弛约束

然而,上述共线约束所导出的精确解仅仅在理论上可行,实际操作过程中,由于空间复杂度的问题,并不能够实现。为此,文章中给出了一种“对偶”实现,并证明了两者的等价性。

核心公式如下:

6.png

文章中证明了“对偶”实现施加以下额外约束后,等价于理论精确解:

71.png

最后,文章移除该额外约束,并得到CoCA的最终实现,这是松弛约束(Slack Constraint)的由来。

03-实验结果

长文本能力

文章分别评估了重新训练和基于LLaMA微调2种方式,在PG-19 数据集 (Rae et al., 2019)和 (Mohtashami & Jaggi, 2023) 提出的密钥检索综合评估任务,均表明CoCA相比常规的Self-Attention在长文本能力上具有显著优势。

7.png

Fig. 4. Experiment Results.

消融实验

文章对比了松弛约束和非松弛版本的模型,得到了一些出人意料的结果:即尽管模型结构一致,但松弛约束具有更大的上下文窗口,且不影响模型表达能力。

8.png

Fig. 5. Ablation study.

04-总结

文章提出了一种新的自注意力架构,以解决 RoPE 和原始 Self-Attention 之间的异常行为。这是首次对自注意力机制中查询和键的相对位置的深入研究,并由此发现了此前被忽视的位置编码异常。文章进一步导出了 CoCA 的松弛实现,并在大量实验上表明了该方法在长文本扩展上的优越性。同时,CoCA 与其他优化方法的兼容性,也为其未来的实用价值提供了基础。

CoCA 开源地址:https://github.com/codefuse-ai/Collinear-Constrained-Attention

参考文献

CoCA 预印版本:https://arxiv.org/abs/2309.08646

致谢

感谢来自 Moonshot AI Ltd 的苏剑林和Sangfor Technology 的黄忠强,在论文修改过程中提出的宝贵建议。

本文属于 CodeFuse 模型创新成果,想了解更多CodeFuse 详情和互动交流,欢迎加入 CodeFuse 技术交流群。

目录
相关文章
|
2月前
|
机器学习/深度学习 计算机视觉
【YOLOv11改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
【YOLOv11改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征本文提出了一种全局注意力机制,通过保留通道和空间信息,增强跨维度的交互,减少信息损失。该机制结合3D置换与多层感知器用于通道注意力,卷积空间注意力子模块用于空间注意力。实验结果表明,在CIFAR-100和ImageNet-1K数据集上,该方法在ResNet和MobileNet上优于多种最新注意力机制。
【YOLOv11改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解兼容性函数在注意力机制中的角色与应用
深入理解兼容性函数在注意力机制中的角色与应用
35 1
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【YOLOv8改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
YOLO目标检测专栏探讨了模型创新,如注意力机制,聚焦通道和空间信息的全局注意力模组(GAM),提升DNN性能。GAM在ResNet和MobileNet上优于最新方法。论文及PyTorch代码可在给出的链接找到。核心代码展示了GAM的构建,包含线性层、卷积和Sigmoid激活,用于生成注意力图。更多配置详情参阅相关博客文章。
【YOLOv8改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
|
6月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 注意力机制】DoubleAttention: 双重注意力机制,全局特征聚合和分配
YOLOv8专栏探讨了该目标检测模型的创新改进,如双重注意力块,它通过全局特征聚合和分配提升效率。该机制集成在ResNet-50中,在ImageNet上表现优于ResNet-152。文章提供了论文、代码链接及核心代码示例。更多实战案例与详细配置见相关CSDN博客链接。
|
6月前
|
机器学习/深度学习 图计算 计算机视觉
【YOLOv8改进 - 注意力机制】 CascadedGroupAttention:级联组注意力,增强视觉Transformer中多头自注意力机制的效率和有效性
YOLO目标检测专栏探讨了Transformer在视觉任务中的效能与计算成本问题,提出EfficientViT,一种兼顾速度和准确性的模型。EfficientViT通过创新的Cascaded Group Attention(CGA)模块减少冗余,提高多样性,节省计算资源。在保持高精度的同时,与MobileNetV3-Large相比,EfficientViT在速度上有显著提升。论文和代码已公开。CGA通过特征分割和级联头部增加注意力多样性和模型容量,降低了计算负担。核心代码展示了CGA模块的实现。
|
6月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLOv8改进 - 注意力机制】HCF-Net 之 DASI: 维度感知选择性整合模块 | 小目标
YOLO目标检测专栏介绍了HCF-Net,一种针对红外小目标检测的深度学习模型,包含PPA、DASI和MDCR模块。PPA利用多分支注意力捕获多层次特征,DASI实现自适应特征融合,MDCR通过深度可分离卷积细化空间特征。HCF-Net在SIRST数据集上的实验超越其他模型。论文和代码可在提供的链接中找到。DASI模块通过信道分区选择机制动态融合高维和低维特征。YOLOv8引入了DASI结构,结合不同尺度特征以增强小目标检测。更多配置细节参见相关链接。
|
6月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLOv8改进 - 注意力机制】HCF-Net 之 PPA:并行化注意力设计 | 小目标
YOLO目标检测专栏介绍了HCF-Net,一种用于红外小目标检测的深度学习模型,它通过PPA、DASI和MDCR模块提升性能。PPA利用多分支特征提取和注意力机制,DASI实现自适应特征融合,MDCR通过多层深度可分离卷积细化空间特征。HCF-Net在SIRST数据集上表现出色,超越其他方法。论文和代码分别在[arxiv.org](https://arxiv.org/pdf/2403.10778)和[github.com/zhengshuchen/HCFNet](https://github.com/zhengshuchen/HCFNet)上。YOLOv8的PPA类展示了整合注意力机制的结构
|
7月前
|
机器学习/深度学习 自然语言处理 机器人
注意力机制详解(二)
注意力机制(Attention Mechanism)对比分析:无Attention模型中,Encoder-Decoder框架处理文本序列时,输入信息被编码为单一的中间语义表示,导致每个目标单词生成时使用相同编码,忽视了输入序列中各单词的不同影响。引入Attention模型后,每个目标单词根据输入序列动态分配注意力权重,更好地捕捉输入相关性,尤其适用于长序列,避免信息丢失。Self-Attention则进一步在序列内部建立联系,用于理解不同部分间的关系,常见于Transformer和BERT等模型中。
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
注意力机制详解(一)
注意力机制是受人类认知过程启发的一种深度学习技术,它允许模型动态地聚焦于输入的不同部分,根据上下文分配“注意力”。这种机制最早在序列到序列模型中提出,解决了长距离依赖问题,增强了模型理解和处理复杂数据的能力。基本的注意力计算涉及查询(Q)、键(K)和值(V),通过不同方式(如点积、拼接等)计算相关性并应用softmax归一化,得到注意力权重,最后加权组合值向量得到输出。自注意力是注意力机制的一种形式,其中Q、K和V通常是相同的。在自然语言处理(NLP)中,注意力机制广泛应用在Transformer和预训练模型如BERT中,显著提升了模型的表现。
|
7月前
|
机器学习/深度学习 自然语言处理 算法
YOLOv5改进 | 注意力机制 | 添加三重注意力机制 TripletAttention【完整代码】
本文介绍了三重注意力机制在YOLOv5目标检测中的应用,这是一种轻量级方法,通过三分支结构捕获跨维度交互来计算注意力权重,几乎不增加计算开销。文章详细阐述了三重注意力的原理,包括全局、组间和组内三个层次的注意力计算,并提供了将TripletAttention模块添加到YOLOv5网络的教程。作者提供了代码实现和yaml配置文件的修改指导,以及在训练脚本中设置配置文件路径的步骤。完整代码附在文章末尾,适合初学者实践。此外,文章还鼓励读者探索在不同位置添加三重注意力以进一步优化模型性能。

热门文章

最新文章