Flask实现内部接口----pycharm安装及新建,location代表着文件路径,下面是Python的环境,Flask是由Python开发的框架,Python文件接口ython通过GET发送

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: Flask实现内部接口----pycharm安装及新建,location代表着文件路径,下面是Python的环境,Flask是由Python开发的框架,Python文件接口ython通过GET发送

Flask实现内部接口-pycharm安装及新建项目_哔哩哔哩_bilibili

使用Python Flask实现识别接口

第一步,先安装PyCharm

第二步,下载PyCharm

第三步,选择

第四步

第五步 打印一下Python文件,这里有一个main.py文件

def print_hi(name):
    print(f'Hi',{name})
 
if __name__ == '__main__':
    print_hi('PyCharm')

第六步 打开Pycharm,新建一个Python文件

第七步 叫lean_flask

import logging
from flask import Flask
 
def init_log():
    # 设置打印到控制台的格式和等级
    logging.basicConfig(format='%(asctime)s %(filename)s %(levelname)s %(message)s', datefmt='%a %d %b %Y %H:%M:%S',
                        level=logging.INFO)
    # 设置输出到的文件和编码
    file_handler = logging.FileHandler("ocr.log", encoding="utf-8")
    # 设置输出等级
    file_handler.setLevel(logging.INFO)
    # 设置输出到文件的日志格式
    file_handler.setFormatter(logging.Formatter('%(asctime)s %(filename)s %(levelname)s %(message)s'))
    logger = logging.getLogger()
    logger.handlers.append(file_handler)
 
app = Flask(__name__)
@app.route("/learn/hello")
def hello_world():
    return "Hello,world!"
 
if __name__ == '__main__':
    app.run(host='0.0.0.0',debug=True,port=8888)

第八步 用小写字母,有多个字母用下划线之间隔开,

第九步 import logging,引入日志模块

第十步 设置打印日志的函数和基础格式

第十一步 可以设置时间,文件名称,日志等级,日志内容,时间

第十二步 各个含义

第十三步 指定打印文件和编码

第十四步 解决乱码问题,用handler

第十五步 使用 flask之前先声明

pip install flask==3.0.0

第十六步添加路由

第十七步,debug代表着重启服务器,port代表着8888

第十八步 服务器成功启动了

import logging
 
import requests
from flask import Flask
 
def init_log():
    # 设置打印到控制台的格式和等级
    logging.basicConfig(format='%(asctime)s %(filename)s %(levelname)s %(message)s', datefmt='%a %d %b %Y %H:%M:%S',
                        level=logging.INFO)
    # 设置输出到的文件和编码
    file_handler = logging.FileHandler("ocr.log", encoding="utf-8")
    # 设置输出等级
    file_handler.setLevel(logging.INFO)
    # 设置输出到文件的日志格式
    file_handler.setFormatter(logging.Formatter('%(asctime)s %(filename)s %(levelname)s %(message)s'))
    logger = logging.getLogger()
    logger.handlers.append(file_handler)
 
init_log()
app = Flask(__name__)
@app.route("/learn/hello")
def hello_world():
    return "Hello,world!"
@app.route("/learn/path/<string:name>")
def lean_path(name):
    return name
@app.route("/learn/m-get",methods=["GET"])
def learn_get_method():
    age = requests.args.get("age")
    name = requests.args.get("name")
    logging.info("learn m-get age 是: %s ,name是: %s",age,name)
    return "SUCCESS",200
if __name__ == '__main__':
    app.run(host='0.0.0.0',debug=True,port=8888)
 

第十九步 利用POSTMAN可以对接口进行测试,打开他,点击send发送一下请求,可以检查接口:

第二十步 接口怎样写,可以看到HelloWorld了,已经返回成功了

第二十一步,默认是字符串类型

第二十二步,路径要以/开头

第二十四 这里先要用import 引入文件

第二十五 先用flask.request这个

第二十六步 通过args.get方法,我们可以获取到值

第二十七步给他写一个状态码

第二十八 调用函数

第二十九步 添加POSTMAN接口

第三十步,我们再调用另一个接口

第三十一步,这里我们发现已经调用成功了

第三十二步 日志的格式

第三十三步,通过POST方式来获取数据,通过JSON模块去实现一下

第三十四 通过JSON格式

第三十五

第三十六步 用loads方法,返回一下数据

第三十七步 发送一下请求

第三十八步 jsonify

第三十九步 up主写错了,这里要改成name

import json
import logging
 
import requests
from flask import Flask, request, jsonify
 
 
def init_log():
    # 设置打印到控制台的格式和等级
    logging.basicConfig(format='%(asctime)s %(filename)s %(levelname)s %(message)s', datefmt='%a %d %b %Y %H:%M:%S',
                        level=logging.INFO)
    # 设置输出到的文件和编码
    file_handler = logging.FileHandler("ocr.log", encoding="utf-8")
    # 设置输出等级
    file_handler.setLevel(logging.INFO)
    # 设置输出到文件的日志格式
    file_handler.setFormatter(logging.Formatter('%(asctime)s %(filename)s %(levelname)s %(message)s'))
    logger = logging.getLogger()
    logger.handlers.append(file_handler)
 
 
init_log()
 
app = Flask(__name__)
@app.route("/learn/hello")
def hello_world():
    return "Hello,world!"
@app.route("/learn/path/<string:name>")
def lean_path(name):
    return name
@app.route("/learn/m-get",methods=["GET"])
def learn_get_method():
    age = request.args.get("age")
    name = request.args.get("name")
    logging.info("learn m-get age 是: %s ,name是: %s",age,name)
    return "SUCCESS",200
@app.route("/learn/m-post",methods=["POST"])
def learn_post_method():
    data = request.data
    logging.info("learn post-m data : %s",data)
    data = json.loads(data)
    age = data["age"]
    name = data["name"]
    logging.info("learn post-m age:%s name:%s",age,name)
    return jsonify(data),200
if __name__ == '__main__':
    app.run(host='0.0.0.0',debug=True,port=8888)
 

第40步 最后得到数据


相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
打赏
0
7
11
3
42
分享
相关文章
Python 高级编程与实战:构建自动化测试框架
本文深入探讨了Python中的自动化测试框架,包括unittest、pytest和nose2,并通过实战项目帮助读者掌握这些技术。文中详细介绍了各框架的基本用法和示例代码,助力开发者快速验证代码正确性,减少手动测试工作量。学习资源推荐包括Python官方文档及Real Python等网站。
【新手必看】PyCharm2025 免费下载安装配置教程+Python环境搭建、图文并茂全副武装学起来才嗖嗖的快,绝对最详细!
PyCharm是由JetBrains开发的Python集成开发环境(IDE),专为Python开发者设计,支持Web开发、调试、语法高亮、项目管理、代码跳转、智能提示、自动完成、单元测试和版本控制等功能。它有专业版、教育版和社区版三个版本,其中社区版免费且适合个人和小型团队使用,包含基本的Python开发功能。安装PyCharm前需先安装Python解释器,并配置环境变量。通过简单的步骤即可在PyCharm中创建并运行Python项目,如输出“Hello World”。
518 13
【新手必看】PyCharm2025 免费下载安装配置教程+Python环境搭建、图文并茂全副武装学起来才嗖嗖的快,绝对最详细!
Chainlit:一个开源的异步Python框架,快速构建生产级对话式 AI 应用
Chainlit 是一个开源的异步 Python 框架,帮助开发者在几分钟内构建可扩展的对话式 AI 或代理应用,支持多种工具和服务集成。
281 9
Python Web 框架 FastAPI
FastAPI 是一个现代的 Python Web 框架,专为快速构建 API 和在线应用而设计。它凭借速度、简单性和开发人员友好的特性迅速走红。FastAPI 支持自动文档生成、类型提示、数据验证、异步操作和依赖注入等功能,极大提升了开发效率并减少了错误。安装简单,使用 pip 安装 FastAPI 和 uvicorn 即可开始开发。其优点包括高性能、自动数据验证和身份验证支持,但也存在学习曲线和社区资源相对较少的缺点。
151 15
Python流行orm框架对比
Python中有多个流行的ORM框架,如SQLAlchemy、Django ORM、Peewee、Tortoise ORM、Pony ORM、SQLModel和GINO。每个框架各有特点,适用于不同的项目需求。SQLAlchemy功能强大且灵活,适合复杂项目;Django ORM与Django框架无缝集成,易用性强;Peewee轻量级且简单,适合小型项目;Tortoise ORM专为异步框架设计;Pony ORM查询语法直观;SQLModel结合Pydantic,适合FastAPI;GINO则适合异步环境开发。初学者推荐使用Django ORM或Peewee,因其易学易用。
153 4
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
192 7
使用Python和Flask构建简易Web API
使用Python和Flask构建简易Web API
233 3
利用Python和Flask构建轻量级Web应用的实战指南
利用Python和Flask构建轻量级Web应用的实战指南
235 2
如何使用Python和Flask构建一个简单的RESTful API。Flask是一个轻量级的Web框架
本文介绍了如何使用Python和Flask构建一个简单的RESTful API。Flask是一个轻量级的Web框架,适合小型项目和微服务。文章从环境准备、创建基本Flask应用、定义资源和路由、请求和响应处理、错误处理等方面进行了详细说明,并提供了示例代码。通过这些步骤,读者可以快速上手构建自己的RESTful API。
305 2

热门文章

最新文章

目录
目录