麻省理工IOT教授撰写的1058页Python程序设计人工智能实践手册!

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: Python是世界上最流行的语言之一,也是编程语言中使用人数增长最快的一种。开发者经常会很快地发现自己喜欢Python。他们会欣赏Python的表达力、可读性、简洁性和交互性,也会喜欢开源软件开发环境,这个开源环境正在为广泛的应用领域提供快速增长的可重用软件基础。

Python是世界上最流行的语言之一,也是编程语言中使用人数增长最快的一种。


开发者经常会很快地发现自己喜欢Python。他们会欣赏Python的表达力、可读性、简洁性和交互性,也会喜欢开源软件开发环境,这个开源环境正在为广泛的应用领域提供快速增长的可重用软件基础。


几十年来,一些趋势已经强有力地显现出来。计算机硬件已经迅速变得更快、更便宜、更小;互联网带宽已经迅速变得越来越大,同时也越来越便宜;优质的计算机软件已经变得越来越丰富,并且通过“开源”方式免费或几乎免费;很快,“物联网”将连接数以百亿计的各种可想象的设备。这将导致以快速增长的速度和数量生成大量数据。

在今天的计算技术中,最新的创新都是关于数据的—数据科学、数据分析、大数据、关系数据库(SQL)以及NoSQL和NewSQL数据库,我们可以通过Python编程的创新处理方式解决每一个问题。

第一部分:Python基础知识快速入门

  • 第1章 Python及大数据概述
  • 第2章 Python程序设计概述
  • 第3章 控制语句
  • 第4章 函数
  • 第5章 序列:列表和元组

第1章Python及大数据概述

  • 了解计算机领域令人兴奋的最新发展。
  • 回顾面向对象编程的基础知识。
  • 了解Python的优势。
  • 了解将要在本书中使用的主要的Python库和数据科学库。
  • 练习使用IPython解释器以交互模式执行Python代码。
  • 执行一个制作动态柱状图的Python脚本。
  • 使用基于Web浏览器的Jupyter Notebook创建并运行Python代码。
  • 了解“大数据”到底有多大,以及它如何快速地变得越来越大。
  • 阅读一个关于流行的移动导航APP的大数据案例研究。
  • 认识人工智能—一个计算机科学和数据科学的交叉学科。

第2章Python程序设计概述

  • 继续使用IPython交互模式输入代码段并立即查看执行结果。
  • 编写简单的Python语句和脚本。
  • 掌握创建变量来存储数据的方法。
  • 熟悉内置数据类型。
  • 学会使用算术运算符和比较运算符,了解它们的优先级。
  • 学会使用单引号、双引号和三引号字符串。
  • 学会使用内置函数print显示文本。
  • 学会使用内置函数input提示用户在键盘上输入数据、获取输入的数据,以及在程序中使用这些数据。
  • 学会使用内置函数int将文本转换为整型数。
  • 学会使用比较运算符和if语句来决定是否执行一条语句或一组语句。
  • 了解Python中的对象和动态类型。
  • 学会使用内置函数type获取对象的类型。

第3章控制语句

  • 使用if、if...else和if...elif...else语句进行决策。
  • 使用while和for重复执行语句。
  • 使用增强赋值运算符缩短赋值表达式。
  • 使用for语句和内置的range函数重复一系列针对值的操作。
  • 使用while执行边界值控制的迭代。
  • 使用布尔运算符and、or和not创建复合条件。
  • 使用break停止循环。
  • 使用continue强制执行循环的下一次迭代。
  • 利用函数式编程的特点编写更简洁、更清晰、更易于调试和更易于并行化的脚本。

第4章函数

  • 创建自定义函数。
  • 导入并使用Python标准库模块,如random和math模块,重用代码以避免重复工作。
  • 在函数间传递数据。
  • 生成一系列随机数。
  • 通过随机数生成器了解模拟技术。
  • 利用种子控制随机数生成器,保证可重复性。
  • 将值打包进元组和解包元组中的值。
  • 通过元组从函数返回多个值。
  • 理解标识符的作用域如何决定在程序中可以使用它的位置。
  • 创建带默认参数的函数。
  • 使用关键字参数调用函数。
  • 创建可以接收不定长参数的函数。
  • 使用对象的方法。
  • 编写并使用递归函数

第5章序列:列表和元组

  • 创建和初始化列表和元组。
  • 访问列表、元组和字符串的元素。
  • 对列表排序和搜索,以及搜索元组。
  • 在函数和方法中使用列表和元组。
  • 使用列表来完成常见操作,例如搜索项目、排序列表、插入项目和删除项目。
  • 使用Python其他的函数式编程功能,包括lambda表达式、函数式编程操作过滤器、映射和归约。
  • 使用函数式列表推导可以轻松快速地创建列表,并且可以使用生成器表达式按需生成值。
  • 使用二维列表。
  • 使用Seaborn和Matplotlib可视化库,增强数据分析和演示技巧。
  • 这些概念之间的联系不是非常紧密,读者可以有选择性地阅读自己感兴趣的概念

由于内容实在太多了所以每个章节我就少展示了一些,需要的小伙伴可以  点击这里获取!

第二部分Python数据结构、字符串和文件

第6章字典和集合

  • 使用字典表示键-值对的无序合集。
  • 使用集合来表示不重复值的无序合集。
  • 创建、初始化、引用字典和集合的元素。
  • 遍历字典的键、值和键-值对。
  • 添加、删除、更新字典的键-值对。
  • 使用字典和集合的比较运算符。
  • 用集合运算符和方法来组合集合。
  • 使用运算符in和not in确定字典是否包含某个键或值。
  • 使用可变集合操作来修改集合的内容。
  • 使用推导式快速方便地创建词典和集合。
  • 了解如何构建动态可视化内容。
  • 增强读者对可变类型和不变类型的理解。

第7章使用NumPy进行面向数组的编程

  • 了解数组与列表的不同之处。
  • 使用numpy模块的高性能ndarray。
  • 用IPython的%timeit魔术命令比较列表和ndarray的性能。
  • 使用ndarray有效地存储和检索数据。
  • 创建和初始化ndarray。
  • 引用单个的ndarray元素。
  • 通过ndarray进行迭代。
  • 创建和操作多维ndarray。
  • 执行普通的ndarray操作。
  • 创建和操作pandas一维Series对象和二维DataFrame结构。
  • 自定义Series对象和DataFrame结构的索引。
  • 在一个Series对象和一个DataFrame结构中计算基本的描述性统计数据。
  • 自定义pandas库输出格式中的浮点数精度

第8章字符串:深入讨论

  • 理解文本处理。
  • 字符串方法的使用。
  • 格式化字符串内容。
  • 拼接以及重复字符串。
  • 去除字符串结尾的空白字符。
  • 改变字母的大小写。
  • 使用比较运算符对字符串进行比较。
  • 在字符串中查找和替换子串。
  • 字符串拆分。
  • 依据指定的分隔符拼接一组字符串得到单个新字符串。
  • 创建并使用正则表达式来匹配字符串中的模式,替换子字符串并验证数据。
  • 使用正则表达式的元字符、量词、字符类和分组。
  • 了解字符串操作对自然语言处理的重要性。
  • 理解数据科学术语—数据整理、数据规整和数据清理。使用正则表
  • 达式将数据整理为需要的格式。

第9章文件和异常

  • 理解文件和持久数据的概念。
  • 读、写和更新文件。
  • 读、写CSV文件。CSV是机器学习数据集常用的一种格式。
  • 将对象序列化为JSON,或将JSON反序列化为对象。JSON是
  • Internet中传输数据时广泛使用的一种数据交换格式。
  • 使用with语句确保资源能够正确释放,避免“资源泄露”。
  • 使用try语句分隔可能发生异常的代码,并使用关联的except子句处理这些异常。
  • 使用try语句的else子句执行代码。只有在try子句的语句序列中没
  • 有发生任何异常时else子句中的代码才会执行。
  • 使用try语句的finally子句执行代码。无论try子句的语句序列中是否发生异常,finally子句中的代码都会执行。
  • 引发异常以指示运行时问题。
  • 理解导致异常的函数和方法的回溯。
  • 使用pandas加载CSV文件数据到DataFrame中,并进行泰坦尼克号灾难数据集的处理。

由于内容实在太多了所以每个章节我就少展示了一些,需要的小伙伴可以  点击这里获取!

第三部分Python高级主题

第10章面向对象编程

  • 创建自定义类和类对象。
  • 理解创建有价值的类的作用。
  • 掌握属性的访问控制。
  • 理解面向对象的优点。
  • 使用Python特殊方法__repr__、__str__和__format__得到对象的字符串表示。
  • 使用Python特殊方法重载(重定义)用于新类对象的运算符。
  • 从已有类中继承方法和属性到新类中,然后再自定义新类。
  • 理解基类(父类)和派生类(子类)的继承概念。
  • 理解用于实现“一般化编程”的鸭子类型和多态性。
  • 理解所有类继承基本功能的object类。
  • 比较组合和继承。
  • 将测试用例构建到文档字符串中,并使用doctest运行这些测试。
  • 理解命名空间以及它们如何影响作用域。

第四部分人工智能、云和大数据案例研究

第11章自然语言处理

第12章Twitter数据挖掘

第13章IBM Watson和认知计算

第14章机器学习:分类、回归和聚类

第15章深度学习

第16章大数据:Hadoop、Spark、NoSQL和IoT

  • 了解与大数据及其增长速度有关的概念。
  • 使用结构化查询语言(SQL)操作SQLite关系数据库。
  • 了解NoSQL数据库的四种主要类型。
  • 将推文存储在MongoDB NoSQL JSON文档数据库中,并在Folium地图上进行可视化。
  • 了解Apache Hadoop及其在大数据批处理应用程序中的使用方法。
  • 在Microsoft的Azure HDInsight云服务上构建Hadoop MapReduce应用程序。
  • 了解Apache Spark及其在高性能、实时大数据应用程序中的使用方法。
  • 使用Spark流处理小批量数据。
  • 了解物联网(IoT)和发布/订阅模型。
  • 发布来自模拟互联网连接设备的消息,并在仪表板中进行消息可视化。
  • 订阅PubNub的实时Twitter和IoT流并进行数据可视化。

限于文章篇幅原因,就展示到这里了,有需要的小伙伴可以  点击这里获取!

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
算法 Python
Python 大神修炼手册:图的深度优先&广度优先遍历,深入骨髓的解析
在 Python 编程中,掌握图的深度优先遍历(DFS)和广度优先遍历(BFS)是进阶的关键。这两种算法不仅理论重要,还能解决实际问题。本文介绍了图的基本概念、邻接表表示方法,并给出了 DFS 和 BFS 的 Python 实现代码示例,帮助读者深入理解并应用这些算法。
62 2
|
4月前
|
存储 IDE 开发工具
编写Python参考手册速查软件(一)
编写Python参考手册速查软件(一)
63 1
|
5月前
|
API 开发者 Python
Python高手修炼手册:精通文件系统操作,掌控I/O管理,提升编程效率
在Python编程中,从初学者成长为高手,关键在于深入理解底层细节并熟练运用高效工具。本文通过对比分析,探讨如何从基础出发,逐步精通文件系统操作与I/O管理,显著提升编程效率。文件系统操作方面,pathlib模块相较于传统的os和os.path模块更为直观易用;在I/O管理上,异步I/O相比同步I/O能大幅提升程序的并发能力和响应速度。通过这些技巧,开发者不仅能优化代码结构,还能预见并解决潜在性能问题,实现从细节到全局的全面提升。
46 3
|
4月前
|
Python
编写Python参考手册速查软件(二)
编写Python参考手册速查软件(二)
44 0
|
6月前
|
程序员 测试技术 开发工具
豆瓣评分7.9!世界级讲师耗时5年整理出的Python学习手册!
Python是一门流行的开源编程语言,广泛用于各个领域的独立程序与脚本化应用中。它不仅免费、可移植、功能强大,同时相对简单,而且使用起来充满乐趣。从软件业界的任意一角到来的程序员,都会发现Python着眼于开发者的生产效率以及软件质量,因此无论你的项目是大还是小,选择Python都将带来战略性的优势。 今天给小伙伴们分享的这份手册讲述了完整的Python语言,力争满足“语言”和“原理”两个方面的需求,并拥有足够的深度以便实用。废话不多说,下面展示给大家。
|
6月前
|
算法 数据挖掘 数据处理
豆瓣评分8.7!Python pandas创始人亲码的数据分析入门手册!
在众多解释型语言中,Python最大的特点是拥有一个巨大而活跃的科学计算社区。进入21世纪以来,在行业应用和学术研究中采用python进行科学计算的势头越来越猛。 近年来,由于Python有不断改良的库(主要是pandas),使其成为数据处理任务的一大代替方案,结合其在通用编程方面的强大实力,完全可以只使用Python这一种语言去构建以数据为中心的应用程序。 作为一个科学计算平台,Python的成功源于能够轻松的集成C、C++以及Fortran代码。大部分现代计算机环境都利用了一些Fortran和C库来是西安线性代数、优选、积分、快速傅里叶变换以及其他诸如此类的算法。
|
6月前
|
算法 数据挖掘 数据处理
豆瓣评分8.7!Python pandas创始人亲码的数据分析入门手册!
在众多解释型语言中,Python最大的特点是拥有一个巨大而活跃的科学计算社区。进入21世纪以来,在行业应用和学术研究中采用python进行科学计算的势头越来越猛。 近年来,由于Python有不断改良的库(主要是pandas),使其成为数据处理任务的一大代替方案,结合其在通用编程方面的强大实力,完全可以只使用Python这一种语言去构建以数据为中心的应用程序。 作为一个科学计算平台,Python的成功源于能够轻松的集成C、C++以及Fortran代码。大部分现代计算机环境都利用了一些Fortran和C库来是西安线性代数、优选、积分、快速傅里叶变换以及其他诸如此类的算法。
|
6月前
|
数据采集 数据可视化 算法
GitHub星标68K!Python数据分析入门手册带你从数据获取到可视化
Python作为一门优秀的编程语言,近年来受到很多编程爱好者的青睐。一是因为Python本身具有简捷优美、易学易用的特点;二是由于互联网的飞速发展,我们正迎来大数据的时代,而Python 无论是在数据的采集与处理方面,还是在数据分析与可视化方面都有独特的优势。我们可以利用 Python 便捷地开展与数据相关的项目,以很低的学习成本快速完成项目的研究。
|
6月前
|
数据采集 数据可视化 算法
GitHub星标68K!Python数据分析入门手册带你从数据获取到可视化
Python作为一门优秀的编程语言,近年来受到很多编程爱好者的青睐。一是因为Python本身具有简捷优美、易学易用的特点;二是由于互联网的飞速发展,我们正迎来大数据的时代,而Python 无论是在数据的采集与处理方面,还是在数据分析与可视化方面都有独特的优势。我们可以利用 Python 便捷地开展与数据相关的项目,以很低的学习成本快速完成项目的研究。 今天给小伙伴们分享的这份Python数据分析入门手册本着实用性的目的,着眼于整个数据分析的流程,介绍了从数据采集到可视化的大致流程。
|
6月前
|
机器学习/深度学习 算法 数据可视化
Python数据分析高手修炼手册:线性回归算法,让你的数据说话更有力
【8月更文挑战第1天】在数据驱动时代,掌握数据分析技能至关重要。线性回归是最基础且强大的工具之一,能从复杂数据中提炼简单有效的模型。本文探索Python中线性回归的应用并通过实战示例加深理解。线性回归建立变量间线性关系模型:Y = β0 + β1*X + ε。使用scikit-learn库进行实战:首先安装必要库,然后加载数据、训练模型并评估性能。示例展示了如何使用`LinearRegression`模型进行房价预测,包括数据可视化。掌握线性回归,让数据“说话”更有力。
56 2

热门文章

最新文章