【C++】模板初阶(上)

简介: **C++模板简介** 探索C++泛型编程,通过模板提升代码复用。模板作为泛型编程基础,允许编写类型无关的通用代码。以`Swap`函数为例,传统方式需为每种类型编写单独函数,如`Swap(int&)`、`Swap(double&)`等,造成代码冗余。函数模板解决此问题,如`template<typename T> void Swap(T&, T&)`,编译器根据实参类型推导生成特定函数,减少重复代码,增强可维护性。模板分函数模板和类模板,提供处理不同数据类型但逻辑相似的功能。

前言

本篇博客主要内容:初步接触C++模板语法

在进行完类和对象内容之后,就可以开始我们C++学习的第二个阶段:STL库的学习。不过在进入STL内容的深度学习之前,需要给大家简单补充一下C++模板部分的知识。话不多说,开始我们今天的内容。

泛型编程

C语言中,我们经常会编写和使用到一些函数,比如Swap函数,用来交换两个变量的值。但,如果你的需求是要交换各种类型数据,可能就需要多写几个接口,如下:

// 提供能交换整型变量的函数
void Swap(int& left, int& right)
{
   
   
    int temp = left;
    left = right;
    right = temp;
}
// 提供能交换浮点型的函数
void Swap(double& left, double& right)
{
   
   
    double temp = left;
    left = right;
    right = temp;
}
// 提供能交换字符类型的函数
void Swap(char& left, char& right)
{
   
   
    char temp = left;
    left = right;
    right = temp;
}
// 。。。。

这样确实能解决问题,但是缺陷也是非常明显的

  1. 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函数。
  2. 代码的可维护性比较低,一个出错可能所有的重载均出错。

那能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成代码呢?
在C++中,存在这样一个模具,通过给这个模具中填充不同材料(类型),来获得不同材料的铸件(即生成具体类型的代码)

泛型编程编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。

模板

在C++中,你可能会遇到一些函数或类,它们需要处理不同的数据类型,但算法或逻辑是相似的。为了避免为每个数据类型都编写一个专门的函数或类,C++引入了模板的概念。通过使用模板,你可以编写一个通用的函数或类,并在需要时指定数据类型。
C++中的模板分为函数模板类模板两种。
在这里插入图片描述

函数模板

概念及简单使用

概念:函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本

函数模板的格式:
template
返回值类型 函数名(参数列表){ }

例如,以下是一个简单的函数模板,实现了所有类型的Swap函数,同时提供了几个测试用例:

#include<iostream>
using namespace std;

template<typename T>
void Swap(T& left, T& right)
{
   
   
    T temp = left;
    left = right;
    right = temp;
} 

int main()
{
   
   
    int a = 1, b = 2;
    double da = 1.1, db = 2.2;
    char ca = 'a', cb = 'b';
    int* pa = &a;
    int* pb = &b;

    cout << a << " " << b << endl;
    Swap(a, b);
    cout << a << " " << b << endl;
    cout << endl;

    //。。。
    return 0;
}

在这里插入图片描述
一个需要写上好多遍才能将所有类型都完善的交换函数,得益于函数模板的出现,将冗余大量的代码压缩,同时增强了可维护性

注:typename是用来定义模板参数的关键字,也可以使用class来代替(但不能使用struct来代替typename)

函数模板的原理

函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器

所以,程序运行的不是我们编写的Swap函数模板,而是通过编译器和我们所写模具推演生成的一个个确切独立的函数。
在这里插入图片描述
在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理double类型的代码,对于字符类型也是如此。

相关文章
|
1月前
|
程序员 C++
C++模板元编程入门
【7月更文挑战第9天】C++模板元编程是一项强大而复杂的技术,它允许程序员在编译时进行复杂的计算和操作,从而提高了程序的性能和灵活性。然而,模板元编程的复杂性和抽象性也使其难以掌握和应用。通过本文的介绍,希望能够帮助你初步了解C++模板元编程的基本概念和技术要点,为进一步深入学习和应用打下坚实的基础。在实际开发中,合理运用模板元编程技术,可以极大地提升程序的性能和可维护性。
|
2月前
|
安全 编译器 C++
C++一分钟之-编译时计算:constexpr与模板元编程
【6月更文挑战第28天】在C++中,`constexpr`和模板元编程用于编译时计算,提升性能和类型安全。`constexpr`指示编译器在编译时计算函数或对象,而模板元编程通过模板生成类型依赖代码。常见问题包括误解constexpr函数限制和模板递归深度。解决策略包括理解规则、编写清晰代码、测试验证和适度使用。通过实战示例展示了如何使用`constexpr`计算阶乘和模板元编程计算平方。
50 13
|
1月前
|
存储 编译器 C++
【C++】详解C++的模板
【C++】详解C++的模板
|
6天前
|
编译器 C++
【C++】模板初级
【C++】模板初级
|
6天前
|
安全 编译器 C++
【C++】模板进阶
【C++】模板进阶
|
30天前
|
编译器 C++ 容器
C++一分钟之-可变模板参数与模板模板参数
【7月更文挑战第21天】C++的模板实现泛型编程,C++11引入可变模板参数和模板模板参数增强其功能。可变模板参数(如`print`函数)用于处理任意数量的参数,需注意展开参数包和递归调用时的处理。模板模板参数(如`printContainer`函数)允许将模板作为参数,需确保模板参数匹配和默认值兼容。这些特性增加灵活性,但正确使用是关键。
32 4
|
1月前
|
安全 编译器 C++
C++一分钟之-模板元编程实例:类型 traits
【7月更文挑战第15天】C++的模板元编程利用编译时计算提升性能,类型traits是其中的关键,用于查询和修改类型信息。文章探讨了如何使用和避免过度复杂化、误用模板特化及依赖特定编译器的问题。示例展示了`is_same`类型trait的实现,用于检查类型相等。通过`add_pointer`和`remove_reference`等traits,可以构建更复杂的类型转换逻辑。类型traits增强了代码效率和安全性,是深入C++编程的必备工具。
42 11
|
1月前
|
Java 编译器 Linux
【c++】模板进阶
本文详细介绍了C++中的模板技术,包括非类型模板参数的概念、如何使用它解决静态栈的问题,以及模板特化,如函数模板特化和类模板特化的过程,以提升代码的灵活性和针对性。同时讨论了模板可能导致的代码膨胀和编译时间增加的问题。
20 2
|
1月前
|
C++ 开发者
C++一分钟之-编译时计算:constexpr与模板元编程
【7月更文挑战第2天】C++的`constexpr`和模板元编程(TMP)实现了编译时计算,增强代码效率。`constexpr`用于声明编译时常量表达式,适用于数组大小等。模板元编程则利用模板进行复杂计算。常见问题包括编译时间过长、可读性差。避免方法包括限制TMP使用,保持代码清晰。结合两者可以解决复杂问题,但需明确各自适用场景。正确使用能提升代码性能,但需平衡复杂性和编译成本。
57 3
|
1月前
|
编译器 C语言 C++
【C++】模板初阶(下)
C++的函数模板实例化分为隐式和显式。隐式实例化由编译器根据实参推断类型,如`Add(a1, a2)`,但`Add(a1, d1)`因类型不一致而失败。显式实例化如`Add&lt;double&gt;(a1, d1)`则直接指定类型。模板函数不支持自动类型转换,优先调用非模板函数。类模板类似,用于创建处理多种数据类型的类,如`Vector&lt;T&gt;`。实例化类模板如`Vector&lt;int&gt;`和`Vector&lt;double&gt;`创建具体类型对象。模板使用时,函数模板定义可分头文件和实现文件,但类模板通常全部放头文件以避免链接错误。