阿里云百炼模型训练实战流程:从入门到实战应用

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 【7月更文第2天】阿里云百炼是AI大模型开发平台,提供一站式服务,涵盖模型训练到部署。用户从注册登录、创建应用开始,选择模型框架,配置资源。接着,进行数据准备、预处理,上传至阿里云OSS。模型训练涉及设置参数、启动训练及调优。训练后,模型导出并部署为API,集成到应用中。平台提供监控工具确保服务性能。通过百炼,开发者能高效地进行大模型实战,开启AI创新。

在当今AI技术飞速发展的时代,阿里云作为全球领先的云计算服务提供商,推出了“阿里云百炼”这一创新平台,旨在简化大模型的训练、部署和应用过程,助力企业和开发者快速构建AI解决方案。本文将深入浅出地介绍如何在阿里云百炼平台上实现模型训练的实战流程,从环境搭建到模型训练,再到应用部署,让你轻松掌握大模型训练的全过程。

一、初识阿里云百炼

001.png

阿里云百炼是一站式的AI大模型开发与应用平台,它整合了从模型训练、推理到部署的全链条服务,为用户提供强大的计算能力、丰富的模型选择以及便捷的开发环境。平台支持多语言模型接入,无论是新手还是经验丰富的开发者,都能在这里找到适合自己的开发路径。

二、准备工作:环境配置与模型选择

  1. 注册与登录:首先,访问阿里云百炼官方网站并注册账号,登录后进入控制台。

  2. 创建应用:在应用中心选择“应用管理”,点击“新增应用”,按照指引填写应用名称、描述等基本信息,选择合适的模型框架,如通义千问等,开始构建你的项目。
    002.png

  3. 配置资源:根据模型训练的需求,合理配置所需的计算资源,包括CPU、GPU类型和数量,以及存储空间等。阿里云百炼提供了灵活的资源配置方案,确保训练效率与成本的最优平衡。

三、数据准备与预处理

  1. 数据收集:明确训练目标后,开始收集或整理相关领域的训练数据。确保数据质量与多样性,以覆盖模型学习的各种场景。
    003.png

  2. 数据清洗与标注:使用阿里云提供的数据处理工具或第三方服务对数据进行清洗,去除无效、重复或错误的数据,并对必要数据进行标注,提高训练效果。
    005.png

  3. 上传数据:将处理好的数据集上传至阿里云OSS存储,随后在百炼平台的应用配置中关联数据源,为模型训练做准备。

四、模型训练与调优

004.png

  1. 设置训练参数:在百炼平台上,根据模型特性与任务需求,配置训练参数,包括学习率、批次大小、训练轮次等。

  2. 启动训练:点击“开始训练”,百炼平台会自动分配资源并执行训练任务。期间,你可以在训练监控界面实时查看训练进度、损失函数变化等关键指标。

  3. 模型评估与调优:训练完成后,利用平台提供的评估工具对模型性能进行测试,根据评估结果调整模型参数或数据集,进行多次迭代,直至达到满意的效果。

五、模型部署与应用

  1. 模型导出:训练好的模型可以导出为指定格式,如ONNX或TensorFlow Serving,便于后续部署。

  2. 接口服务化:在百炼平台部署模型为API服务,只需简单配置即可生成可调用的API接口,为前端应用或后端服务提供智能支持。
    006.png

  3. 流式输出与集成:如开头提到的实战案例,通过SpringBoot接入阿里云百炼模型服务,实现流式输出内容,前端通过调用接口实时获取模型响应,完成AI功能的集成。

六、监控与维护

部署后的模型服务需要持续监控其性能与稳定性,利用阿里云百炼的监控工具,实时查看API调用情况、响应时间及错误率等,确保服务的高效运行。

结语

阿里云百炼以其全面的开发工具链、高效的资源管理和灵活的部署选项,大大降低了大模型开发的门槛,使企业与开发者能够快速实现从模型训练到应用落地的全流程。通过上述实战流程,你不仅能够掌握大模型训练的精髓,更能开启属于自己的AI创新之旅。随着AI技术的不断进步,阿里云百炼将持续赋能,助力每一位开发者在AI浪潮中乘风破浪。

目录
相关文章
|
23天前
|
存储 自然语言处理 搜索推荐
从音频与照片生成数字人视频:阿里云百炼工作流打造“超级数字人”全流程解析
阿里云百炼上线通义万相2.2数字人视频生成模型S2V,支持音频+单张人像生成个性化数字人视频。结合Qwen-TTS、Qwen-Image与IMS智能剪辑,打造从内容生成到视频输出的全自动“超级数字人”工作流,大幅提升制作效率与质量。
591 2
人工智能
306 0
|
1月前
|
机器学习/深度学习 数据采集 算法
量子机器学习入门:三种数据编码方法对比与应用
在量子机器学习中,数据编码方式决定了量子模型如何理解和处理信息。本文详解角度编码、振幅编码与基础编码三种方法,分析其原理、实现及适用场景,帮助读者选择最适合的编码策略,提升量子模型性能。
139 8
|
1月前
|
人工智能 API 开发者
图文教程:阿里云百炼API-KEY获取方法,亲测全流程
本文详细介绍了如何获取阿里云百炼API-KEY,包含完整流程与截图指引。需先开通百炼平台及大模型服务,再通过控制台创建并复制API-KEY。目前平台提供千万tokens免费额度,适合开发者快速上手使用。
680 5
|
数据采集 数据可视化 定位技术
阿里云百炼智能体与工作流深度联动,打造更灵活的AI+流程开发体验
阿里云百炼平台推出智能体与工作流相互调用功能,支持四种灵活嵌套模式,提升复杂业务流程的复用与自动化能力。通过组件化封装,用户可在智能体中调用工作流,或在工作流中嵌套智能体,显著提高开发效率与系统灵活性,适用于不同技术水平的开发者。
885 0
|
4月前
|
机器学习/深度学习 存储 运维
机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统
本研究通过实验演示了异常标记如何逐步完善异常检测方案和主要分类模型在欺诈检测中的应用。实验结果表明,Isolation Forest作为一个强大的异常检测模型,无需显式建模正常模式即可有效工作,在处理未见风险事件方面具有显著优势。
300 46
|
Java 数据处理
阿里云百炼工作流支持多模型协同标注,三模型投票分类用户意图实战
本文介绍了一种基于多模型协作的高效分类工作流方案,用于解决传统标注工作中人力依赖大、易出错的问题。通过通义千问系列的 Qwen-Plus、Qwen-Max 和 Qwen3-30b-a3b 三大模型,结合投票机制,实现售前售后意图识别的精准分类。文中详细讲解了如何在阿里云百炼应用广场创建任务型工作流,包括模型节点配置、条件判断设置及测试发布全流程。此外,还提供了批量打标的 Java 示例代码,适用于更复杂的意图标注场景。跟随文章步骤,即可快速构建高效率、高准确性的分类系统。
984 0
|
4月前
|
JSON 数据格式
本地部署的qwen3-8b模型和百炼上的qwen3-8b模型效果不一致
我在使用Function Call时发现,百炼平台上的Qwen3-8B模型与本地部署的Qwen3-8B模型效果存在差异,主要体现在函数参数生成上,本地模型常出现漏参或JSON格式错误,而百炼模型表现正常。想确认百炼平台的Qwen3-8B是否为更高版本?