【机器学习】大模型训练的深入探讨——Fine-tuning技术阐述与Dify平台介绍

简介: 【机器学习】大模型训练的深入探讨——Fine-tuning技术阐述与Dify平台介绍


引言

Fine-tuning技术允许用户根据特定任务的需求对预训练好的大模型进行微调,从而提高模型在特定任务上的性能。相比从头开始训练模型,可以显著降低训练成本和时间。还可以快速适应新任务的数据分布和特征,使模型能够更好地适应新的应用场景

Dify平台提供了丰富的预训练模型和自定义模型,用户可以直接在平台上进行Fine-tuning,无需自行准备和训练模型。该平台提供了数据导入清洗标注等丰富的数据处理功能,用户可以方便地对数据进行预处理和后处理,为Fine-tuning提供高质量的数据支持,从而进一步降低了成本。通过在Dify平台上应用Fine-tuning技术,用户可以轻松地对模型进行调整和优化,从而显著提升模型在新任务上的准确率、召回率等性能指标。

Dify平台支持多种主流的机器学习和深度学习框架,如TensorFlowPyTorch等,方便用户进行开发和部署。平台提供了自动化部署工具,用户只需简单配置即可将模型部署到云端或本地服务器上,降低了部署的难度和时间成本。

Fine-tuning技术的原理阐

预训练模型

预训练模型是在大量无标注标注数据上预先训练的深度学习模型,如BERTGPT等。这些模型通过在大规模文本数据上进行无监督学习,已经学习到了丰富的语言特征、词汇、语法和语义知识。

迁移学习

Fine-tuning是迁移学习的一种具体应用。迁移学习的核心思想是利用在一个任务上学习到的知识来帮助解决另一个不同但相关的任务。在Fine-tuning中,我们将预训练模型的知识迁移到新的特定任务上。

模型初始化

在Fine-tuning过程中,我们首先使用预训练模型的参数作为新任务模型的初始参数。这样做的好处是,预训练模型已经学习到了通用的语言特征,这些特征在新任务中仍然是有用的

模型微调

接下来,我们在新的特定任务的数据集上继续训练模型,对模型的参数进行微调。这通常包括解冻预训练模型的一部分层(通常是高层),并使用新任务的数据和标签进行训练。通过反向传播梯度下降等优化算法,模型会根据新任务的要求对权重进行更新,从而适应新任务的特定特征。

超参数调整

在Fine-tuning过程中,超参数的调整至关重要。超参数如学习率、批次大小和训练轮次等需要根据特定任务和数据集进行调整,以确保模型在训练过程中的有效性和性能。

任务设计

任务设计是Fine-tuning的关键一步。它决定了模型如何从预训练阶段迁移到特定任务。任务设计需要考虑的因素包括输入输出的形式损失函数的选择模型结构的调整等。

例如,对于文本分类任务,可能需要修改预训练模型的输出层以适应新的类别数量;对于序列生成任务,可能需要调整模型的解码器部分。

数学模型公式

Fine-tuning在数学上可以被看作是一个优化问题。假设预训练模型是(f(\cdot;\theta)),其中(\theta)是模型的参数。我们的目标是找到一组参数(\theta^*),使得模型在新任务上的损失函数最小。这通常通过反向传播和梯度下降等优化算法来实现。

如下是基于深度学习框架以及预训练模型库。使用PyTorch和Transformers库进行Fine-tuning的简化代码示例,以文本分类任务为例来帮助大家理解。

import torch  
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler  
from transformers import BertTokenizer, BertForSequenceClassification, AdamW, get_linear_schedule_with_warmup  
from your_dataset_module import YourDataset  # 假设你有一个自定义的数据集类  
  
# 加载预训练模型和分词器  
model_name = 'bert-base-uncased'  
tokenizer = BertTokenizer.from_pretrained(model_name)  
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=2)  # 假设是二分类任务  
  
# 准备数据集  
train_dataset = YourDataset(tokenizer, data_file='train.txt', label_list=['0', '1'], max_seq_length=128)  
train_sampler = RandomSampler(train_dataset)  
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=16)  
  
# Fine-tuning设置  
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  
model.to(device)  
  
# 优化器和调度器  
optimizer = AdamW(model.parameters(), lr=2e-5, eps=1e-8)  
epochs = 4  
total_steps = len(train_dataloader) * epochs  
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)  
  
# 训练循环  
for epoch in range(1, epochs+1):  
    model.train()  
    for batch in train_dataloader:  
        b_input_ids = batch['input_ids'].to(device)  
        b_input_mask = batch['attention_mask'].to(device)  
        b_labels = batch['labels'].to(device)  
          
        optimizer.zero_grad()  
        outputs = model(b_input_ids, attention_mask=b_input_mask, labels=b_labels)  
        loss = outputs.loss  
        loss.backward()  
        optimizer.step()  
        scheduler.step()  
          
        # 可以在这里添加打印损失或其他监控代码  
  
# 保存模型  
model_to_save = model.module if hasattr(model, 'module') else model  # 注意:对于DataParallel模型,使用model.module  
model_to_save.save_pretrained('./model_save/')  
tokenizer.save_pretrained('./model_save/')

Dify平台介绍

Dify旨在简化AI应用的创建、部署和管理过程,使开发者能够更快速、更轻松地构建和运营基于GPT等模型的AI应用。

核心功能包括可视化的Prompt编排、运营、数据集管理等,支持开发者通过简单的拖拽和配置,将不同的功能模块组合在一起,快速创建出满足需求的AI应用。

可视化Prompt编排:允许用户通过界面化编写prompt并调试,简化开发过程。

数据集管理:支持多种数据格式,如CSV文件和其他格式的数据,方便用户导入和使用数据。

后端即服务和LLMOps概念集成:涵盖了从数据预处理到模型训练、部署和持续优化的整个流程。

支持多种模型:兼容并支持接入多种大型语言模型,包括OpenAI的GPT系列、Anthropic的Claude系列等。

Dify不仅适用于专业开发者,也允许没有编程基础的用户快速开发和运营自己的AI chatbot应用

Dify部署

关于Dify部署的问题可参考 LDG_AGI 大佬的文章



创建AI

新手建议选择基础编排

接入大模型api

首推的就是deepseek,原因很简单——白菜价而且也很稳定

创建api的key

选择知识库

知识库扮演着至关重要的角色,它为用户提供了丰富的数据和信息资源,以支持各种AI应用的构建和运行它包含了各种领域的知识和信息,如文本、图片、音频等,这些数据被用于训练AI模型,为模型提供丰富的背景知识和上下文信息。

以《三国演义》txt文本为例,通过在Dify平台上上传该文本并对模型进行Fine-tuning,模型在回答三国相关问题时能够更加准确和专业

相关文章
|
2月前
|
负载均衡 测试技术 调度
大模型分布式推理:张量并行与流水线并行技术
本文深入探讨大语言模型分布式推理的核心技术——张量并行与流水线并行。通过分析单GPU内存限制下的模型部署挑战,详细解析张量并行的矩阵分片策略、流水线并行的阶段划分机制,以及二者的混合并行架构。文章包含完整的分布式推理框架实现、通信优化策略和性能调优指南,为千亿参数大模型的分布式部署提供全面解决方案。
591 4
|
2月前
|
人工智能 机器人 人机交互
当AI学会“看、听、懂”:多模态技术的现在与未来
当AI学会“看、听、懂”:多模态技术的现在与未来
306 117
|
2月前
|
机器学习/深度学习 存储 并行计算
大模型推理加速技术:FlashAttention原理与实现
本文深入解析大语言模型推理加速的核心技术——FlashAttention。通过分析传统注意力机制的计算瓶颈,详细阐述FlashAttention的IO感知算法设计、前向反向传播实现,以及其在GPU内存层次结构中的优化策略。文章包含完整的CUDA实现示例、性能基准测试和实际部署指南,为开发者提供高效注意力计算的全套解决方案。
389 10
|
2月前
|
人工智能 文字识别 自然语言处理
从“看见”到“预见”:合合信息“多模态文本智能技术”如何引爆AI下一场革命。
近期,在第八届中国模式识别与计算机视觉学术会议(PRCV 2025)上,合合信息作为承办方举办了“多模态文本智能大模型前沿技术与应用”论坛,汇聚了学术界的顶尖智慧,更抛出了一颗重磅“炸弹”——“多模态文本智能技术”概念。
176 1
|
2月前
|
监控 算法 测试技术
大模型推理服务优化:动态批处理与连续批处理技术
本文系统阐述大语言模型推理服务中的关键技术——动态批处理与连续批处理。通过分析传统静态批处理的局限性,深入解析动态批处理的请求调度算法、内存管理策略,以及连续批处理的中断恢复机制。文章包含完整的服务架构设计、核心算法实现和性能基准测试,为构建高性能大模型推理服务提供全面解决方案。
372 3
|
2月前
|
机器学习/深度学习 存储 缓存
大模型推理加速技术:PagedAttention原理与实现
本文深入解析大语言模型推理中的革命性技术——PagedAttention,该技术是vLLM推理引擎的核心创新。通过将操作系统中的虚拟内存分页概念引入注意力机制,PagedAttention有效解决了KV缓存的内存碎片问题,实现了近乎零浪费的KV缓存管理。文章详细阐述其原理、内存管理机制、实现细节,并提供完整的代码示例和性能分析。
321 1
|
2月前
|
存储 缓存 算法
淘宝买家秀 API 深度开发:多模态内容解析与合规推荐技术拆解
本文详解淘宝买家秀接口(taobao.reviews.get)的合规调用、数据标准化与智能推荐全链路方案。涵盖权限申请、多模态数据清洗、情感分析、混合推荐模型及缓存优化,助力开发者提升审核效率60%、商品转化率增长28%,实现UGC数据高效变现。
|
2月前
|
存储 人工智能 搜索推荐
拔俗AI大模型教学平台:开启智能教育新时代
在AI与教育深度融合背景下,本文基于阿里云技术构建大模型教学平台,破解个性化不足、反馈滞后等难题。通过“大模型+知识图谱+场景应用”三层架构,实现智能答疑、精准学情分析与个性化学习路径推荐,助力教学质量与效率双提升,推动教育智能化升级。
|
2月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
|
2月前
|
存储 人工智能 搜索推荐
拔俗AI助教系统:基于大模型与智能体架构的新一代教育技术引擎
AI助教融合大语言模型、教育知识图谱、多模态感知与智能体技术,重构“教、学、评、辅”全链路。通过微调LLM、精准诊断错因、多模态交互与自主任务规划,实现个性化教学。轻量化部署与隐私保护设计保障落地安全,未来将向情感感知与教育深度协同演进。(238字)

热门文章

最新文章