PAI机器学习平台如何进行分布式训练?

简介: 【7月更文挑战第1天】PAI机器学习平台如何进行分布式训练?

PAI机器学习平台如何进行分布式训练?

PAI机器学习平台通过分布式训练(DLC)进行大规模的分布式训练,该过程涉及多个关键步骤,包括任务配置、环境设置、数据集管理等方面。以下将具体介绍如何进行分布式训练:

  1. 准备工作
    • 创建OSS Bucket存储空间:如果需要进行模型微调或增量训练,需要创建一个OSS Bucket来存储相关数据[^2^]。
    • 登录PAI控制台:通过访问阿里云的控制台,进入PAI工作空间,选择要操作的工作空间名称。
  2. 新建任务
    • 进入新建任务页面:在工作空间页面的左侧导航栏选择“模型开发与训练”>“分布式训练(DLC)”,然后单击“新建任务”进入任务配置页面[^4^]。
  3. 配置训练任务参数
    • 环境配置:选择合适的节点镜像和运行环境。PAI支持官方镜像和自定义镜像,可以根据实际需求进行配置[^4^]。
    • 数据集配置:指定任务运行过程中所需的数据集位置,确保已准备好的数据集能够在训练任务中使用[^4^]。
    • 启动命令:设置任务启动时需要执行的命令,可以注入环境变量以获取特定值[^4^]。
    • 三方库和代码配置:可以选择三方库列表或requirements.txt文件来管理所需的第三方库,并配置代码存储位置或上传代码文件[^4^]。
    • 资源配置:根据任务需求,配置资源类型、来源、配额以及各类节点的数量和规格,如CPU核数、GPU卡数等[^4^]。
    • 框架高级配置:对于使用PyTorch等框架的任务,可以通过高级配置提高训练灵活性,满足特定训练场景[^4^]。
  4. 提交任务
    • 提交方式:通过控制台、Python SDK或命令行提交DLC任务。在控制台中,完成上述配置后,提交任务即可[^4^]。
  5. 监控和管理任务
    • 任务监控:在任务提交后,可以在PAI控制台查看任务的运行状态、日志和资源消耗情况,以确保任务按预期执行[^1^]。
  6. 后续操作
    • 部署和调试:训练完成后,可以直接在PAI上部署模型,并进行在线调试,验证模型推理效果[^2^]。
    • 微调训练和增量训练:如果预训练数据集与实际业务场景不完全匹配,可以进行微调训练或增量训练,以优化模型效果[^2^]。

综上所述,通过分布式训练(DLC),PAI机器学习平台为用户提供了高效、灵活的分布式计算能力,适用于各种规模的深度学习任务。对于希望利用分布式训练提升模型性能的企业或个人开发者而言,合理配置和优化上述步骤,可以显著提高训练效率和模型质量。

目录
相关文章
|
1月前
|
人工智能 调度 芯片
PAI训练服务:云上大模型训练新篇章
本文介绍了通用AI时代下的新训练方法及PAI平台的优化。随着大模型时代的到来,算力需求激增,硬件和网络通信成为瓶颈。PAI平台通过自动容错、3D健康检测等技术确保训练稳定性;通过资源配额、智能调度等提高性价比;并推出PAI-TorchAcc和PAI-ChatLearn两大引擎,分别实现高效训练加速和灵活的对齐训练,显著提升训练性能与效果。这些改进解决了大规模AI训练中的关键问题,提升了效率和稳定性。
|
1月前
|
存储 人工智能 大数据
AI开发新范式,PAI模型构建平台升级发布
本次分享由阿里云智能集团产品专家高慧玲主讲,聚焦AI开发新范式及PAI模型构建平台的升级。分享分为四个部分,围绕“人人可用”和“面向生产”两大核心理念展开。通过降低AI工程化门槛、提供一站式全链路服务,PAI平台致力于帮助企业和开发者更高效地实现AI应用。案例展示中,介绍了多模态模型微调在文旅场景的应用,展示了如何快速复现并利用AI解决实际问题。最终目标是让AI技术更普及,赋能各行业,推动社会进步。
|
2月前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
193 73
|
1月前
|
机器学习/深度学习 人工智能
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
Diff-Instruct 是一种从预训练扩散模型中迁移知识的通用框架,通过最小化积分Kullback-Leibler散度,指导其他生成模型的训练,提升生成性能。
62 11
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
|
30天前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
82 6
|
2月前
|
人工智能 JSON 算法
魔搭支持在阿里云人工智能平台PAI上进行模型训练、部署了!
现在,魔搭上的众多模型支持在阿里云人工智能平台PAI-Model Gallery上使用阿里云算力资源进行模型训练和部署啦!
|
3月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
2月前
|
人工智能 弹性计算 监控
分布式大模型训练的性能建模与调优
阿里云智能集团弹性计算高级技术专家林立翔分享了分布式大模型训练的性能建模与调优。内容涵盖四大方面:1) 大模型对AI基础设施的性能挑战,强调规模增大带来的显存和算力需求;2) 大模型训练的性能分析和建模,介绍TOP-DOWN和bottom-up方法论及工具;3) 基于建模分析的性能优化,通过案例展示显存预估和流水线失衡优化;4) 宣传阿里云AI基础设施,提供高效算力集群、网络及软件支持,助力大模型训练与推理。
|
24天前
|
人工智能 智能设计 数据处理
|
3月前
|
机器学习/深度学习 人工智能 监控
AutoTrain:Hugging Face 开源的无代码模型训练平台
AutoTrain 是 Hugging Face 推出的开源无代码模型训练平台,旨在简化最先进模型的训练过程。用户无需编写代码,只需上传数据即可创建、微调和部署自己的 AI 模型。AutoTrain 支持多种机器学习任务,并提供自动化最佳实践,包括超参数调整、模型验证和分布式训练。
285 4
AutoTrain:Hugging Face 开源的无代码模型训练平台