基于深度学习网络的USB摄像头实时视频采集与人脸检测matlab仿真

简介: **摘要 (Markdown格式):**```markdown- 📹 使用USB摄像头(Tttttttttttttt666)实时视频检测,展示基于YOLOv2在MATLAB2022a的实施效果: ``` Tttttttttttttt1111111111------------5555555555 ```- 📺 程序核心利用MATLAB视频采集配置及工具箱(Dddddddddddddd),实现图像采集与人脸定位。- 🧠 YOLOv2算法概览:通过S×S网格预测边界框(B个/网格),含坐标、类别概率和置信度,高效检测人脸。

1.算法运行效果图预览
将摄像头对这播放视频的显示器,然后进行识别,识别结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

本课题中,使用的USB摄像头为:

image.png

2.算法运行软件版本
matlab2022a

3.部分核心程序
程序中包括MATLAB读取摄像头的配置方法,摄像头配置工具箱安装文件。

```while toc < runtime
% Compute the frame rate averaged over the last 10 frames
if counter==10
counter = 0;
fps = 10/(toc-timeTracker);
timeTracker = toc;
end
counter = counter + 1;

% Get a new frame from the camera
img = getsnapshot(vid);
%进行识别
[R,C,K] = size(img);
KK1 = R/img_size(1);
KK2 = C/img_size(2);
tmps1 = [];
tmps2 = [];
I = imresize(img,img_size(1:2));
[bboxes,scores] = detect(detector,I,'Threshold',0.4);
bboxes2 = bboxes;
scores2 = scores;
imshow(I2, []); axis off
title(['FPS: ' sprintf('%2.1f', fps)])
end
150

```

4.算法理论概述
于YOLOv2(You Only Look Once, Version 2)深度学习网络的USB摄像头实时视频采集与人脸检测是一项结合计算机视觉与深度学习技术的复杂应用,旨在实时地从视频流中检测并定位人脸。这一过程大致分为几个关键步骤:图像采集、目标检测、以及后处理。

   首先,通过USB摄像头采集实时视频流。这一步通常涉及硬件接口编程,确保摄像头能够以合适的帧率(例如,20fps)稳定输出视频数据。在软件层面,可能使用MATLAB的视频采集库等工具来捕获视频帧。

  然后进行目标检测,采用yolov2深度学习网络:
AI 代码解读

image.png

   YOLOv2将目标检测视为一个回归问题,直接在输出层预测边界框的坐标、类别概率和置信度。对于每个网格(YOLOv2将图像划分为S×S个网格),网络预测B个边界框,每个边界框包含44个坐标值(中心点坐标、宽度、高度)、C个类别的概率和一个对象存在的置信度。
AI 代码解读

image.png

目录
打赏
0
11
14
4
214
分享
相关文章
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
基于神经网络逆同步控制方法的两变频调速电机控制系统matlab仿真
本课题针对两电机变频调速系统,提出基于神经网络a阶逆系统的控制方法。通过构造原系统的逆模型,结合线性闭环调节器实现张力与速度的精确解耦控制,并在MATLAB2022a中完成仿真。该方法利用神经网络克服非线性系统的不确定性,适用于参数变化和负载扰动场景,提升同步控制精度与系统稳定性。核心内容涵盖系统原理、数学建模及神经网络逆同步控制策略,为工业自动化提供了一种高效解决方案。
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
基于yolov2和googlenet网络的疲劳驾驶检测算法matlab仿真
本内容展示了基于深度学习的疲劳驾驶检测算法,包括算法运行效果预览(无水印)、Matlab 2022a 软件版本说明、部分核心程序(完整版含中文注释与操作视频)。理论部分详细阐述了疲劳检测原理,通过对比疲劳与正常状态下的特征差异,结合深度学习模型提取驾驶员面部特征变化。具体流程包括数据收集、预处理、模型训练与评估,使用数学公式描述损失函数和推理过程。课题基于 YOLOv2 和 GoogleNet,先用 YOLOv2 定位驾驶员面部区域,再由 GoogleNet 分析特征判断疲劳状态,提供高准确率与鲁棒性的检测方法。
|
8月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
304 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
182 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现

热门文章

最新文章