人工智能平台PAI产品使用合集之已经通过自定义镜像部署了一个模型,想要上传并导入其他模型,该如何操作

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

问题一:stable difussion部署完成后,上传不了模型,但是上传图片没有问题,这是怎么回事?

上传的文件大小也小于在5GB,可就是总是在右下角显示上传失败。



参考答案:

在PAI-EAS中,如果你已经通过自定义镜像部署了一个模型,想要上传并导入其他模型,你可以按照以下步骤操作:

1. 创建新的服务:首先,你需要在PAI-EAS控制台上创建一个新的服务。在创建服务时,你可以选择使用相同的自定义镜像,因为这个镜像已经包含了你的模型训练和推理环境。

2. 更新模型代码:在你的自定义镜像中,你需要修改模型加载的部分,使其能够根据配置或参数加载不同的模型。你可能需要在代码中添加一些逻辑来判断并加载不同的模型文件。

3. 更新模型文件:在EAS控制台,你可以将新的模型文件(如权重、配置文件等)上传到服务的文件系统中。这通常可以通过EAS的文件管理功能或者在服务启动时通过脚本从外部源下载完成。

4. 部署新服务:完成上述步骤后,你可以部署这个新服务。这样,你就有了一个可以加载不同模型的服务。

5. 调用服务:在调用服务时,你可能需要传递一个参数来指示服务加载哪个模型。这取决于你在代码中如何实现模型选择的逻辑。

注,此答案收集于阿里云通义大模型。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/608023



问题二:机器学习PAI分数归一化的作用是什么啊?

机器学习PAI分数归一化的作用是什么啊?



参考答案:

不做归一化,u2i的list就会有热门的trigger支配



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/607549



问题三:想请教下机器学习PAI swing-1.0.jar 分数用归一化分数还是原始分呢?

想请教下机器学习PAI swing-1.0.jar 分数用归一化分数还是原始分呢?我用归一化分数离线效果不太好~可调参数已经一样了,这个推荐用归一化分数还是原始分数啊?



参考答案:

这两个分数的顺序都一样的,不影响hitrate



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/607548



问题四:想问下机器学习PAI 这两个jar包 swing-1.0.jar,这时是追加写还是覆盖写的啊?

"想问下机器学习PAI 这两个jar包 swing-1.0.jar,simrank_plus_plus-1.0.jar

同一个输出表,同一个分区

不同的的任务是追加写还是覆盖写啊?我是指多个任务,输出都同一个表,同一个分区

这时是追加写还是覆盖写的啊?"



参考答案:

启动一个任务的多个worker 同时写一个分区,是追加。

多个任务写一个分区,那就乱了



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/607547



问题五:机器学习PAI mind会不同用户有不同的兴趣数吗?

机器学习PAI mind会不同用户有不同的兴趣数吗?



参考答案:

应该是和batch sample 里面的最大的seq_lens 相关



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/607546

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
1月前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
96 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
1月前
|
存储 人工智能 大数据
AI开发新范式,PAI模型构建平台升级发布
本次分享由阿里云智能集团产品专家高慧玲主讲,聚焦AI开发新范式及PAI模型构建平台的升级。分享分为四个部分,围绕“人人可用”和“面向生产”两大核心理念展开。通过降低AI工程化门槛、提供一站式全链路服务,PAI平台致力于帮助企业和开发者更高效地实现AI应用。案例展示中,介绍了多模态模型微调在文旅场景的应用,展示了如何快速复现并利用AI解决实际问题。最终目标是让AI技术更普及,赋能各行业,推动社会进步。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
268 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
1月前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
94 20
|
1月前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
83 6
|
25天前
|
人工智能 智能设计 数据处理
|
1月前
|
机器学习/深度学习 人工智能 运维
人工智能在事件管理中的应用
人工智能在事件管理中的应用
94 21
|
2月前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
94 11

热门文章

最新文章

相关产品

  • 人工智能平台 PAI