人工智能平台PAI产品使用合集之创建了实时特征视图,里面的数据是通过什么传入的

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

问题一:希望在向ai提问时自动扩大ai提问框,自动扩大的距离由用户来设,没问时缩小到无 提问框单大单小都鸡肋



参考答案:

您所描述的功能听起来像是对于某个特定的AI提问界面的用户体验改进。这样的功能通常需要通过界面设计以及前端开发来实现,而不是由AI本身来处理。

假如您是希望在一个网页或应用程序中实现这个功能,那么这会涉及到使用HTML, CSS, 和 JavaScript 等技术来控制提问框的大小和动态变化。基本步骤可能包括:

设计一个可调整大小的输入框UI元素。

使用JavaScript监听用户的交互行为(例如鼠标悬停、点击等)。

根据用户的动作触发CSS动画或直接修改输入框的尺寸属性来调整大小。

允许用户自定义扩大的距离,可能需要一个设置选项来保存用户偏好。

当用户没有与提问框交互时,可以通过定时器或者事件监听器将其恢复到原始大小或最小化状态。

总之,倘若您不是开发者而只是想要这个功能,您可能需要向负责该平台的团队或开发人员提出这个需求。他们会根据现有的架构和技术栈评估实现这个功能的可行性,并决定是否进行相应的更新。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/615012



问题二:在机器学习PAI创建了一个实时的特征视图后,里面的数据是通过这个“实时计算控制台”往里传入数据吗?

在机器学习PAI创建了一个实时的特征视图后,里面的数据是通过这个“实时计算控制台”往里传入数据吗?特征平台 结合 实时计算 这部分操作有没有最佳实践案例呀?



参考答案:

可以看这个:https://help.aliyun.com/zh/flink/developer-reference/tablestore-connector

flink 写入到 tablestore



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/614971



问题三:机器学习PAI这个组件没有了,什么原因?

机器学习PAI这个组件没有了?



参考答案:

目前是算法树中隐藏掉了,还在和算法作者确认原因,不过您画布中的这个算法还是可以使用的,可以右键克隆。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/614402



问题四:机器学习PAI Embedding提取后的向量,如何导入到polarDB4ai里面?

机器学习PAI Embedding提取后的向量,如何导入到polarDB4ai里面?



参考答案:

跨存储跨引擎同步数据,可以用dataworks的数据集成功能,https://help.aliyun.com/zh/dataworks/user-guide/supported-data-source-types-and-read-and-write-operations?spm=a2c4g.11186623.0.0.1a83467fn8o69Z 



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/614401



问题五:请问机器学习PAI启动完成后这个界面可以关闭吗?

请问机器学习PAI启动完成后这个界面可以关闭吗?



参考答案:

机器学习PAI启动完成后,是可以关闭界面的。

阿里云的人工智能平台PAI(Platform For AI)是一个云原生的服务,它支持从数据处理、模型训练到在线部署的整个机器学习流程。使用PAI时,您可以通过DSW交互式建模或Designer拖拽式可视化建模等方式来快速构建模型。一旦您的任务或者模型训练启动后,PAI会自动在云端运行这些任务,这时用户界面可以安全关闭,因为后台的计算和服务不会受到影响。

此外,关闭界面并不会影响正在运行的任务或模型训练过程,因为这些都是在云端进行的。您可以在需要的时候重新登录到PAI平台,查看任务状态或者进行其他操作。不过,如果您正在进行一些需要实时交互的操作,比如调整参数或者实时监控训练过程,那么建议保持界面开启。

综上所述,如果您已经启动了机器学习任务,并且不需要实时监控或调整,那么关闭界面是完全可以的。当您需要再次查看任务结果或者进行后续操作时,只需重新打开PAI平台即可。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/614400

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
打赏
0
2
2
0
1159
分享
相关文章
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
136 7
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
218 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
数据驱动智能,智能优化数据——大数据与人工智能的双向赋能
数据驱动智能,智能优化数据——大数据与人工智能的双向赋能
97 4
特征平台PAI-FeatureStore的功能列表
本内容介绍了阿里云PAI FeatureStore的功能与使用方法,涵盖离线和在线特征管理、实时特征视图、行为序列特征视图、FeatureStore SDK的多语言支持(如Go、Java、Python)、特征生产简化方案、FeatureDB存储特性(高性能、低成本、及时性)、训练样本导出以及自动化特征工程(如AutoFE)。同时提供了相关文档链接和技术细节,帮助用户高效构建和管理特征工程。适用于推荐系统、模型训练等场景。
69 2
基于 PAI-ArtLab 使用 ComfyUI 生成产品效果图
本文介绍了通过PAI ArtLab平台生成电商背景图的实验。用户可上传汽车、家电、化妆品等产品图片,快速生成背景并提升画质,实现降本增效。具体步骤包括登录阿里云完成实名认证,访问PAI ArtLab平台领取免费试用资源,使用ComfyUI加载工作流并上传图片,调整参数生成结果。此外,还提供了 Flux重绘和ControlNet微调等高级功能,以及常见问题解答,帮助用户更好地操作与优化图片效果。
|
2月前
PAI-Rec推荐平台对于实时特征有三个层次
PAI-Rec推荐平台针对实时特征有三个处理层次:1) 离线模拟反推历史请求时刻的实时特征;2) FeatureStore记录增量更新的实时特征,模型特征导出样本准确性达99%;3) 通过callback回调接口记录请求时刻的特征。各层次确保了实时特征的准确性和时效性。
80 0
基于阿里云人工智能平台的智能客服系统开发与部署
随着人工智能技术的发展,智能客服系统成为企业提升服务效率和用户体验的重要工具。阿里云提供包括自然语言处理(NLP)、语音识别(ASR)、机器学习(PAI)等在内的完整AI平台,助力企业快速构建智能客服系统。本文将通过电商平台案例,展示如何基于阿里云AI平台从零开始开发、部署智能客服系统,并介绍其核心优势与最佳实践,涵盖文本和语音客服、知识库管理及数据分析等功能,显著提升客户服务效率和用户满意度。
|
4月前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
126 6
阿里云人工智能平台图像视频特征提取
本文介绍了图像与视频特征提取技术在人工智能和计算机视觉中的应用,涵盖图像质量评分、人脸属性分析、年龄分析、图像多标签打标、图文视频动态分类打标、视频质量评分及视频分类打标。通过深度学习模型如CNN和RNN,这些技术能从海量数据中挖掘有价值信息,为图像分类、目标检测、视频推荐等场景提供支持,提升分析精度与效率。
248 9

相关产品

  • 人工智能平台 PAI
  • AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等