基于结点电压法的配电网状态估计算法matlab仿真

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: **摘要**该程序实现了基于结点电压法的配电网状态估计算法,旨在提升数据的准确性和可靠性。在MATLAB2022a中运行,显示了状态估计过程中的电压和相位估计值,以及误差随迭代变化的图表。算法通过迭代计算雅可比矩阵,结合基尔霍夫定律解决线性方程组,估算网络节点电压。状态估计过程中应用了高斯-牛顿或莱文贝格-马夸尔特法,处理量测数据并考虑约束条件,以提高估计精度。程序结果以图形形式展示电压幅值和角度估计的比较,以及估计误差的演变,体现了算法在处理配电网状态估计问题的有效性。

1.程序功能描述
基于结点电压法的配电网状态估计算法.对配电网实施有效控制和操作的前提是实时数据库中数据的可靠性和准确性。状态估计是一种利用测量数据的相关性和冗余度,应用计算机技术采用数学处理方法来对运行参数进行处理,以提高数据的可靠性和完整性,有效获得电力系统实时状态信息的方法。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
1.jpeg
2.jpeg
3.jpeg

3.核心程序

    %Jacobian = [Jacobian_1_1 Jacobian_1_2; 
    %            Jacobian_2_1 Jacobian_2_2; 
    %            Jacobian_3_1 Jacobian_3_2; 
    %            Jacobian_4_1 Jacobian_4_2; 
    %            Jacobian_5_1 Jacobian_5_2];

    [Jacobian_1_1,Jacobian_1_2] = func_Jacobian_1(Len_IVM,Num_Bus);

    [Jacobian_2_1,Jacobian_2_2] = func_Jacobian_2(V_est,Ang_est,G,B,Index_real_power_injection,FROM_BUS,Len_IRPI,Num_Bus);

    [Jacobian_3_1,Jacobian_3_2] = func_Jacobian_3(V_est,Ang_est,G,B,Index_reactive_power_injection,FROM_BUS,Len_IRP,Num_Bus);

    [Jacobian_4_1,Jacobian_4_2] = func_Jacobian_4(V_est,Ang_est,G,B,Index_real_powerflow,FROM_BUS,TO_BUS,Len_IRPS,Num_Bus);

    [Jacobian_5_1,Jacobian_5_2] = func_Jacobian_5(V_est,Ang_est,G,B,Shunt_Admittance,Index_reactive_powerflow,FROM_BUS,TO_BUS,Len_IRPF,Num_Bus); 


    % Measurement Jacobian, Jacobian..
    Jacobian = [Jacobian_1_1 Jacobian_1_2; 
                Jacobian_2_1 Jacobian_2_2; 
                Jacobian_3_1 Jacobian_3_2; 
                Jacobian_4_1 Jacobian_4_2; 
                Jacobian_5_1 Jacobian_5_2];
    Gm              = Jacobian'*inv(Error)*Jacobian;
    %计算误差
    r               = Values - h;
    %进行状态估计
    dE              = inv(Gm)*(Jacobian'*inv(Error)*r);
    Vector_est      = Vector_est + Step*dE;
    Ang_est(2:end)  = Vector_est(1:Num_Bus-1);
    V_est           = Vector_est(Num_Bus:end);
    Times           = Times + 1;
    Error_aim       = mean(abs(dE));
    errors(Times-1) = Error_aim;
    h_est{Times-1}  = h;
    pause(0.001);
end

disp('状态估计结果');
disp('网络节点 --- 电压幅度    --- 电压相位角度');
for m = 1:Num_Bus
    fprintf('%4d        ',m); 
    fprintf('%8.8f     ',V_est(m)); 
    fprintf('%8.8f  ',Ang_est(m)); 
    fprintf('\n');
end

figure;
subplot(211);
plot(1:Num_Bus,V_est,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
grid on;
xlabel('节点号');
ylabel('电压估计值');
subplot(212);
plot(1:Num_Bus,Ang_est,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
grid on;
xlabel('节点号');
ylabel('电压角度估计值');


figure;
plot(errors,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
grid on;
xlabel('迭代次数');
ylabel('状态估计误差');


figure;
subplot(211);
plot(abs(Values),'b-*');
hold on
plot(abs(h_est{2}),'r-s');
grid on;
legend('真实值','估计值');
xlabel('测量值编号');
ylabel('电压幅度');
title('初始条件下实际值和估计值的误差对比');
subplot(212);
plot(abs(Values),'b-*');
hold on
plot(abs(h_est{end}),'r-s');
grid on;
legend('真实值','估计值');
xlabel('测量值编号');
ylabel('电压幅度');
title('完成估计之后实际值和估计值的误差对比');
27_004m

4.本算法原理
配电网是电力系统的重要组成部分,其运行状态直接影响到电力系统的稳定性和供电质量。因此,对配电网的状态进行准确估计是保障电力系统安全运行的关键。基于结点电压法的配电网状态估计算法是一种常用的方法,它利用结点电压信息来推算配电网的运行状态。结点电压法是一种基于电路分析的状态估计算法,它利用配电网的拓扑结构和结点电压信息,通过解算线性方程组来估计配电网的状态。在配电网中,每个结点都有一个对应的电压值,这些电压值受到注入该结点的功率、结点之间的阻抗以及相邻结点电压的影响。

4.1 结点电压法的基本原理
结点电压法的基本原理是将配电网中的每个结点作为一个未知量,通过结点电压方程来描述网络中各结点电压之间的关系。结点电压方程是基于基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)建立的。

    在配电网中,每个结点都连接有多条支路,每条支路上都有电流流过。根据KCL,流入结点的电流等于流出结点的电流之和。而每条支路上的电流又可以通过该支路上的电压和阻抗来计算。因此,可以通过结点电压方程来表示结点电压和支路电流之间的关系。

   配电网状态估计的求解方法一般采用迭代法,如高斯-牛顿法(Gauss-Newton method)或莱文贝格-马夸尔特法(Levenberg-Marquardt method)。这些方法的基本思想是从一个初始估计值出发,通过迭代计算来逐步逼近最优解。

  在每次迭代中,首先根据当前的状态估计值计算量测函数的值,然后计算目标函数及其梯度。接着,根据目标函数的梯度和一定的搜索方向来确定状态变量的更新量。最后,更新状态变量并判断是否满足收敛条件。如果满足收敛条件,则输出状态估计结果;否则,继续迭代计算。

4.2 结点电压法在配电网状态估计中的应用
结点电压法在配电网状态估计中具有广泛的应用。它可以处理各种类型的量测数据,包括结点电压量测、支路功率量测、支路电流量测等。同时,它还可以考虑配电网中的各种约束条件,如结点电压约束、支路功率约束等。

   在实际应用中,结点电压法通常与其他方法相结合来提高状态估计的精度和可靠性。例如,可以与最小二乘法相结合来处理量测数据的误差;可以与卡尔曼滤波器相结合来实现动态状态估计;可以与人工智能算法相结合来处理量测数据的异常值和缺失值等。
相关文章
|
12天前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
133 73
|
1天前
|
算法 安全
分别使用OVP-UVP和OFP-UFP算法以及AFD检测算法实现反孤岛检测simulink建模与仿真
本课题通过Simulink建模与仿真,实现OVP-UVP、OFP-UFP算法及AFD检测算法的反孤岛检测。OVP-UVP基于电压幅值变化,OFP-UFP基于频率变化,而AFD则通过注入频率偏移信号来检测孤岛效应,确保电力系统安全稳定运行。系统使用MATLAB 2013b进行建模与仿真验证。
|
1天前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
12天前
|
算法
基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真
该程序基于蚁群优化算法(ACO)为无人机(UAV)规划最优巡检路线,将无人机视作“蚂蚁”,巡检点作为“食物源”,目标是最小化总距离、能耗或时间。使用MATLAB 2022a版本实现,通过迭代更新信息素浓度来优化路径。算法包括初始化信息素矩阵、蚂蚁移动与信息素更新,并在满足终止条件前不断迭代,最终输出最短路径及其长度。
|
15天前
|
算法 数据挖掘 vr&ar
基于ESTAR指数平滑转换自回归模型的CPI数据统计分析matlab仿真
该程序基于ESTAR指数平滑转换自回归模型,对CPI数据进行统计分析与MATLAB仿真,主要利用M-ESTAR模型计算WNL值、P值、Q值及12阶ARCH值。ESTAR模型结合指数平滑与状态转换自回归,适用于处理经济数据中的非线性趋势变化。在MATLAB 2022a版本中运行并通过ADF检验验证模型的平稳性,适用于复杂的高阶自回归模型。
|
15天前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
28天前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
28天前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
2月前
|
算法
基于模糊控制算法的倒立摆控制系统matlab仿真
本项目构建了一个基于模糊控制算法的倒立摆控制系统,利用MATLAB 2022a实现了从不稳定到稳定状态的转变,并输出了相应的动画和收敛过程。模糊控制器通过对小车位置与摆的角度误差及其变化量进行模糊化处理,依据预设的模糊规则库进行模糊推理并最终去模糊化为精确的控制量,成功地使倒立摆维持在直立位置。该方法无需精确数学模型,适用于处理系统的非线性和不确定性。
基于模糊控制算法的倒立摆控制系统matlab仿真
|
29天前
|
资源调度 算法
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。
下一篇
无影云桌面