Python 在 Windows 环境下的文件路径问题

简介: 在 Python 程序中,我们经常需要对文件进行操作。在 Windows 下,文件目录路径使用反斜杠“\”来分隔。然而,在 Python 代码中,反斜杠“\”是转义符,例如“\n”表示换行符、“\t”表示制表符。这样,如果继续使用“\”表示文件路径,就会产生歧义。

在 Python 程序中,我们经常需要对文件进行操作。在 Windows 下,文件目录路径使用反斜杠“\”来分隔。然而,在 Python 代码中,反斜杠“\”是转义符,例如“\n”表示换行符、“\t”表示制表符。这样,如果继续使用“\”表示文件路径,就会产生歧义。

示例问题

例如:

path = "c:\test.txt"

这个路径表示的是 C 盘根目录下的一个文件,还是表示一个字符串呢?因为“\t”也可以解释为制表符。如果让我们人来判断,这当然是一个很简单的问题。但是机器无法做出正确的判断,只有没有歧义的代码机器才会正确执行。

解决办法

采用下面任何一种书写形式均可:

  1. 使用斜杠“/” (推荐)
path = "c:/test.txt"

这样就没有歧义了。

  1. 将反斜杠符号转义
path = "c:\\test.txt"

因为反斜杠是转义符,所以两个“\”表示一个反斜杠符号。

  1. 使用 Python 的 raw string
path = r"c:\test.txt"

在字符串前面加上字母“r”,表示后面是一个原始字符串(raw string)。不过 raw string 主要是为正则表达式设计的,而不是 Windows 路径,所以这种做法尽量少用,可能会出问题。

相关文章
|
6月前
|
XML 存储 搜索推荐
Omnissa Dynamic Environment Manager 2503 - 个性化动态 Windows 桌面环境管理
Omnissa Dynamic Environment Manager 2503 - 个性化动态 Windows 桌面环境管理
107 7
Omnissa Dynamic Environment Manager 2503 - 个性化动态 Windows 桌面环境管理
|
5月前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
347 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
5月前
|
Python
在VScode环境下配置Python环境的方法
经过上述步骤,你的VSCode环境就已经配置好了。请尽情享受这扇你为自己开启的知识之窗。如同你在冒险世界中前行,你的探索之路只有越走越广,你获得的知识只会越来越丰富,你的能力只会越来越强。
505 37
|
6月前
|
Ubuntu 数据库 虚拟化
Windows 环境下 Odoo 安装保姆级教程
本教程详细介绍了在 Windows 系统上通过虚拟机部署 Odoo 的完整流程。首先确认硬件需求,确保 CPU、内存和磁盘空间满足最低配置;接着安装 VMware Workstation Pro 并创建 Ubuntu 虚拟机,配置桥接网络以实现主机与虚拟机的通信;随后借助微聚云快速安装预配置好的 Odoo 环境,简化复杂环境搭建;最后通过浏览器访问虚拟机 IP,完成 Odoo 数据库初始化及基础设置。整个过程清晰易懂,适合新手快速上手 Odoo 部署。
781 4
|
7月前
|
存储 运维 监控
提升Windows Server环境安全性:ADAudit Plus的五大关键优势
在Windows Server环境中,内置的安全审计工具虽有用,但存在专业门槛高、耗时及功能缺失等问题。第三方工具ADAudit Plus应运而生,其五大优势包括:日志聚合、关键活动检测、定制化报告、灵活安全配置和长期日志保留,有效提升系统监控与合规能力。选择ADAudit Plus,助力企业更高效应对审计挑战,强化安全性。
167 2
|
7月前
|
Java API Docker
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
以上内容是一个简单的实现在Java后端中通过DockerClient操作Docker生成python环境并执行代码,最后销毁的案例全过程,也是实现一个简单的在线编程后端API的完整流程,你可以在此基础上添加额外的辅助功能,比如上传文件、编辑文件、查阅文件、自定义安装等功能。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
|
9月前
|
Shell Linux Ruby
Python3虚拟环境venv
`venv` 是 Python 的虚拟环境工具,用于为不同项目创建独立的运行环境,避免依赖冲突。通过 `python3 -m venv` 命令创建虚拟环境,并使用 `source bin/activate` 激活。激活后,所有 Python 包将安装在该环境中,不影响系统全局环境。退出环境使用 `deactivate` 命令。每个虚拟环境拥有独立的包集合,确保项目间的隔离性。删除虚拟环境只需删除其目录即可。
620 34
|
9月前
|
SQL 分布式计算 数据处理
云产品评测|分布式Python计算服务MaxFrame | 在本地环境中使用MaxFrame + 基于MaxFrame实现大语言模型数据处理
本文基于官方文档,介绍了由浅入深的两个部分实操测试,包括在本地环境中使用MaxFrame & 基于MaxFrame实现大语言模型数据处理,对步骤有详细说明。体验下来对MaxCompute的感受是很不错的,值得尝试并使用!
209 1
|
9月前
|
Shell 程序员 开发者
轻松搞定在Python中构建虚拟环境
本教程教你如何使用业界公认的最佳实践,创建一个完全工作的Python开发环境。虚拟环境通过隔离依赖项,避免项目间的冲突,并允许你轻松管理包版本。我们将使用Python 3的内置`venv`模块来创建和激活虚拟环境,确保不同项目能独立运行,不会相互干扰。此外,还将介绍如何检查Python版本、激活和停用虚拟环境,以及使用`requirements.txt`文件共享依赖项。 通过本教程,你将学会: - 创建和管理虚拟环境 - 避免依赖性冲突 - 部署Python应用到服务器 适合新手和希望提升开发环境管理能力的开发者。
585 2
|
9月前
|
Python
探索Python虚拟环境:virtualenv、venv与pipenv比较
在Python开发中,有效的环境管理至关重要。virtualenv、venv和pipenv是常用的虚拟环境管理工具。virtualenv支持Python 2.7+和3.3+,可创建独立环境;venv为Python 3.3+内置库,简单轻量但功能有限;pipenv则结合了包管理和虚拟环境管理,生成Pipfile.lock确保依赖确定性和安全性,推荐作为首选工具。
336 2

推荐镜像

更多