【Python实战】Python多线程批量采集图片

简介: 【Python实战】Python多线程批量采集图片

环境使用

  • python 3.9
  • pycharm

模块使用

  • requests

模块介绍

  • requests

       requests是一个很实用的Python HTTP客户端库,爬虫和测试服务器响应数据时经常会用到,requests是Python语言的第三方的库,专门用于发送HTTP请求,使用起来比urllib简洁很多。

  • parsel

       parsel是一个python的第三方库,相当于css选择器+xpath+re。

parsel由scrapy团队开发,是将scrapy中的parsel独立抽取出来的,可以轻松解析html,xml内容,获取需要的数据。

相比于BeautifulSoup,xpath,parsel效率更高,使用更简单。

  • re

       re模块是python独有的匹配字符串的模块,该模块中提供的很多功能是基于正则表达式实现的,而正则表达式是对字符串进行模糊匹配,提取自己需要的字符串部分,他对所有的语言都通用。

  • os

       os 就是 “operating system” 的缩写,顾名思义,os模块提供的就是各种 Python 程序与操作系统进行交互的接口。通过使用 os 模块,一方面可以方便地与操作系统进行交互,另一方面也可以极大增强代码的可移植性。

  • csv

       它是一种文件格式,一般也被叫做逗号分隔值文件,可以使用 Excel 软件或者文本文档打开 。其中数据字段用半角逗号间隔(也可以使用其它字符),使用 Excel 打开时,逗号会被转换为分隔符。csv 文件是以纯文本形式存储了表格数据,并且在兼容各个操作系统。

模块安装问题:

  • 如果安装python第三方模块:

win + R 输入 cmd 点击确定, 输入安装命令 pip install 模块名 (pip install requests) 回车

在pycharm中点击Terminal(终端) 输入安装命令

  • 安装失败原因:
  • 失败一: pip 不是内部命令

               解决方法: 设置环境变量

  • 失败二: 出现大量报红 (read time out)

               解决方法: 因为是网络链接超时, 需要切换镜像源

 

    清华:https://pypi.tuna.tsinghua.edu.cn/simple
    阿里云:https://mirrors.aliyun.com/pypi/simple/
    中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/
    华中理工大学:https://pypi.hustunique.com/
    山东理工大学:https://pypi.sdutlinux.org/
    豆瓣:https://pypi.douban.com/simple/
    例如:pip3 install -i https://pypi.doubanio.com/simple/ 模块名
  • 失败三: cmd里面显示已经安装过了, 或者安装成功了, 但是在pycharm里面还是无法导入

               解决方法: 可能安装了多个python版本 (anaconda 或者 python 安装一个即可) 卸载一个就好,或者你pycharm里面python解释器没有设置好。

代码实现

什么是代理ip池?

       通俗地比喻一下,它就是一个池子,里面装了很多代理ip。它有如下的行为特征:

  1. 池子里的ip是有生命周期的,它们将被定期验证,其中失效的将被从池子里面剔除。
  2. 池子里的ip是有补充渠道的,会有新的代理ip不断被加入池子中。
  3. 池子中的代理ip是可以被随机取出的。

       这样,代理池中始终有多个不断更换的、有效的代理ip,且我们可以随机从池子中取出代理ip,然后让爬虫程序使用代理ip访问目标网站,就可以避免爬虫被ban的情况。

如何使用呢?

import requests
 
f = open('IP.txt',"r")
 
file = f.readline
 
item = []
 
for proxies in file:
 
    proxies =eval(proxies.replace('\',''))
    item.append(proxies)
proxies = random.choice(item)
response = requests.get(url=url,headers=headers,proxies=proxies)
print(response)

我们这里先是把IP保存到了一个文件里面,我们在请求的时候加入proxies参数即可,这里的url就填我们要请求的网址。

批量采集

接下来,我们就进入到我们的正式学习中,我们今天请求的是某大学网站,由于涉及到隐私,网址不发了,这里教一个思路,其他网站也是一样的。

单线程

我们先试试单线程采集80张图片需要多少秒?

import re
import requests
import datetime
urls = []
 
startime = datetime.datetime.now()
 
def download(url):
    name = re.findall('(\d+).jpg',url)[0]
    img_content = requests.get(url=url).content
    with open('img\\' +name+'.jpeg', mode='wb') as f:
        f.write(img_content)
 
for i in range(1,80):
    url = f"http://**********/student/{i}.jpg"
    urls.append(url)
for url in urls:
    download(url)
 
endtime = datetime.datetime.now()
print((endtime-startime).seconds)

我们这里就是把我们所有要下载的地址遍历到urls里面去,然后执行下载图片函数,我这里用时28秒,我们看看多线程多快。

多线程

我们这里加上多线程,多线程的数量取决于你的电脑性能,话不多说,直接上代码。

from concurrent.futures import ThreadPoolExecutor
import re
import requests
import datetime
urls = []
 
startime = datetime.datetime.now()
 
def download(url):
    name = re.findall('(\d+).jpg',url)[0]
    img_content = requests.get(url=url).content
    with open('img\\' +name+'.jpeg', mode='wb') as f:
        f.write(img_content)
 
for i in range(1,80):
    url = f"http://**********/student/{i}.jpg"
    urls.append(url)
with ThreadPoolExecutor(max_workers=10) as executor:
    for url in urls:
        executor.submit(download,url)
 
endtime = datetime.datetime.now()
print((endtime-startime).seconds)

我们这里开了10个线程,下载完80张图片,只要3s,提升了很快,当我们的图片很多的时候,我们多线程的优势越来越明显。

总结

有的网站回限制IP,所以,我们就要用到IP代理池,本文就到这里了。


相关文章
|
14天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
14天前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
40 10
|
23天前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
26天前
|
算法 Unix 数据库
Python编程入门:从基础到实战
本篇文章将带你进入Python编程的奇妙世界。我们将从最基础的概念开始,逐步深入,最后通过一个实际的项目案例,让你真正体验到Python编程的乐趣和实用性。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。让我们一起探索Python的世界吧!
|
28天前
|
安全 Java 开发者
Java 多线程并发控制:深入理解与实战应用
《Java多线程并发控制:深入理解与实战应用》一书详细解析了Java多线程编程的核心概念、并发控制技术及其实战技巧,适合Java开发者深入学习和实践参考。
51 6
|
27天前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
28天前
|
并行计算 调度 开发者
探索Python中的异步编程:从基础到实战
在Python的世界里,异步编程是一种让程序运行更加高效、响应更快的技术。本文不仅会介绍异步编程的基本概念和原理,还将通过具体代码示例展示如何在Python中实现异步操作。无论你是初学者还是有经验的开发者,都能从中获益,了解如何运用这一技术优化你的项目。
|
28天前
|
数据处理 Python
探索Python中的异步编程:从基础到实战
在Python的世界中,“速度”不仅是赛车手的追求。本文将带你领略Python异步编程的魅力,从原理到实践,我们不单单是看代码,更通过实例感受它的威力。你将学会如何用更少的服务器资源做更多的事,就像是在厨房里同时烹饪多道菜而不让任何一道烧焦。准备好了吗?让我们开始这场技术烹饪之旅。
|
28天前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
38 0
|
28天前
|
监控 JavaScript 前端开发
python中的线程和进程(一文带你了解)
欢迎来到瑞雨溪的博客,这里是一位热爱JavaScript和Vue的大一学生分享技术心得的地方。如果你从我的文章中有所收获,欢迎关注我,我将持续更新更多优质内容,你的支持是我前进的动力!🎉🎉🎉
23 0