【Python实战】Python采集二手车数据——超详细讲解

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 【Python实战】Python采集二手车数据——超详细讲解

环境使用

  • python 3.9
  • pycharm

模块使用

  • requests

模块介绍

  • requests

       requests是一个很实用的Python HTTP客户端库,爬虫和测试服务器响应数据时经常会用到,requests是Python语言的第三方的库,专门用于发送HTTP请求,使用起来比urllib简洁很多。

  • parsel

       parsel是一个python的第三方库,相当于css选择器+xpath+re。

parsel由scrapy团队开发,是将scrapy中的parsel独立抽取出来的,可以轻松解析html,xml内容,获取需要的数据。

相比于BeautifulSoup,xpath,parsel效率更高,使用更简单。

  • re

       re模块是python独有的匹配字符串的模块,该模块中提供的很多功能是基于正则表达式实现的,而正则表达式是对字符串进行模糊匹配,提取自己需要的字符串部分,他对所有的语言都通用。

  • os

       os 就是 “operating system” 的缩写,顾名思义,os模块提供的就是各种 Python 程序与操作系统进行交互的接口。通过使用 os 模块,一方面可以方便地与操作系统进行交互,另一方面也可以极大增强代码的可移植性。

  • csv

       它是一种文件格式,一般也被叫做逗号分隔值文件,可以使用 Excel 软件或者文本文档打开 。其中数据字段用半角逗号间隔(也可以使用其它字符),使用 Excel 打开时,逗号会被转换为分隔符。csv 文件是以纯文本形式存储了表格数据,并且在兼容各个操作系统。

模块安装问题:

  • 如果安装python第三方模块:

win + R 输入 cmd 点击确定, 输入安装命令 pip install 模块名 (pip install requests) 回车

在pycharm中点击Terminal(终端) 输入安装命令

  • 安装失败原因:
  • 失败一: pip 不是内部命令

               解决方法: 设置环境变量

  • 失败二: 出现大量报红 (read time out)

               解决方法: 因为是网络链接超时, 需要切换镜像源

 

    清华:https://pypi.tuna.tsinghua.edu.cn/simple
    阿里云:https://mirrors.aliyun.com/pypi/simple/
    中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/
    华中理工大学:https://pypi.hustunique.com/
    山东理工大学:https://pypi.sdutlinux.org/
    豆瓣:https://pypi.douban.com/simple/
    例如:pip3 install -i https://pypi.doubanio.com/simple/ 模块名
  • 失败三: cmd里面显示已经安装过了, 或者安装成功了, 但是在pycharm里面还是无法导入

               解决方法: 可能安装了多个python版本 (anaconda 或者 python 安装一个即可) 卸载一个就好,或者你pycharm里面python解释器没有设置好。

数据采集

发送请求

首先,我们要进行数据来源分析,知道我们的需求是什么?

明确需求:

  • 明确采集网站是什么?
  • 明确采集数据是什么?

       车辆基本信息

然后,我们分析车辆基本信息数据, 具体是请求那个网址可以得到我们想要的数据。

通过开发者工具, 进行抓包分析:

打开开发者工具: F12 / 鼠标右键点击检查选择network

刷新网页: 让本网页数据内容重新加载一遍 <方便分析数据出处>

搜索数据来源: 复制你想要的内容, 进行搜索即可

    import requests
    url = 'https://www.che168.com/china/a0_0msdgscncgpi1ltocsp1exx0/'
    header = {
        'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36'}
 
    res = requests.get(url,headers=headers)

我们和之前一样,获取数据,我们会发现,车辆的基本信息就在网页源代码中,我们今天就用xpath的方法来解析数据。

 

解析数据

接下来,我们用xpath解析数据。

我们通过网页源代码,我们可以获取到每一个网页的url。

    selector=parsel.Selector(res.text)
 
    detail_url_list = selector.xpath('//ul[@class="viewlist_ul"]/li/a[@class="carinfo"]/@href').getall()

我们可以看到,得到下面数据。

我们会发现,我们得到了两种网页,所以,在这里我们拼接网页就需要注意,这里,我不多说,直接看我是怎么写的。

        if detail_url.split('/') == '':
            detail_url = 'https:'+detail_url
        else:
            detail_url = 'https://www.che168.com'+detail_url

这样,我们就得到了每一个车辆信息的数据网页,看看运行之后的效果吧。

接下来,我们就依次访问某个链接,获取我们想要的数据。

    responses = requests.get(detail_url,headers=headers)
    detail_selector = parsel.Selector(responses.text)

我用不同颜色标注的,就是我们这次想要获取的数据,我们这里以车辆名称为例,讲解下path如何写。

title = detail_selector.xpath('string(//h3[@class="car-brand-name"])').get("").strip()

我们看看网页源代码是如何得到的xpath。

可能有人就要问了,这个

("").strip()

是什么意思?这个就是去除空格的,只是为了后期数据的美观。

后面的我就不一一展示了,我直接放代码了,不懂的在评论区交流。

tableShowMileage = detail_selector.xpath('//ul[@class="brand-unit-item fn-clear"]/li[1]/h4/text()').get("").strip()
theRegistrationTime = detail_selector.xpath('//ul[@class="brand-unit-item fn-clear"]/li[2]/h4/text()').get("").strip()
blockADisplacement = detail_selector.xpath('//ul[@class="brand-unit-item fn-clear"]/li[3]/h4/text()').get("").strip()
addr = detail_selector.xpath('//ul[@class="brand-unit-item fn-clear"]/li[4]/h4/text()').get("").strip()
guobiao = detail_selector.xpath('//ul[@class="brand-unit-item fn-clear"]/li[5]/h4/text()').get("").strip()
price = detail_selector.xpath('string(//span[@id="overlayPrice"])').get()

我们打印这些数据,看看效果吧。

可能大家注意到了,有返回空值的,这个可能就是被反爬,大家感兴趣可以用代理IP试试。

保存数据

和我们上一篇一样,我们先写入字典,然后在写入csv文件里面。

        dit ={
            '车辆':title,
            '表显里程':tableShowMileage,
            '上牌时间':theRegistrationTime,
            '挡位/排量':blockADisplacement,
            '车辆所在地':addr,
            '查看限迁地':guobiao,
            '价格':price,
        }
        
        csv_writer.writerow(dit)

大家感兴趣还可以获取车辆信息更详细的数据,其实原理都是一样的。

总结

通过本文的学习,我们学习了数据采集。我们在采集数据的时候,遇到各种问题,自己在尝试解决问题,也是在一种学习,本次实战,我们明白如何使用xpath解析数据。今天就到这里,有什么问题,可以在评论区留言。


相关文章
|
4天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
6天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
20 4
|
5天前
|
机器学习/深度学习 数据可视化 数据处理
Python数据科学:从基础到实战
Python数据科学:从基础到实战
12 1
|
6天前
|
机器学习/深度学习 JSON API
Python编程实战:构建一个简单的天气预报应用
Python编程实战:构建一个简单的天气预报应用
15 1
|
7天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
16 1
|
8天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
1天前
|
数据采集 存储 数据处理
探索Python中的异步编程:从基础到实战
【10月更文挑战第39天】在编程世界中,时间就是效率的代名词。Python的异步编程特性,如同给程序穿上了一双翅膀,让它们在执行任务时飞得更高、更快。本文将带你领略Python异步编程的魅力,从理解其背后的原理到掌握实际应用的技巧,我们不仅会讨论理论基础,还会通过实际代码示例,展示如何利用这些知识来提升你的程序性能。准备好让你的Python代码“起飞”了吗?让我们开始这场异步编程的旅程!
|
5天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
7天前
|
索引 Python
SciPy 空间数据1
SciPy 通过 `scipy.spatial` 模块处理空间数据,如判断点是否在边界内、计算最近点等。三角测量是通过测量角度来确定目标距离的方法。多边形的三角测量可将其分解为多个三角形,用于计算面积。Delaunay 三角剖分是一种常用方法,可以对一系列点进行三角剖分。示例代码展示了如何使用 `Delaunay()` 函数创建三角形并绘制。
15 0
|
Python
PYTHON实战两数之和
1. 两数之和 难度:简单 收藏 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。 你可以按任意顺序返回答案。
188 0
PYTHON实战两数之和