ClickHouse(24)ClickHouse集成mongodb表引擎详细解析

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: **MongoDB引擎在ClickHouse中提供只读访问远程数据,用于`SELECT`查询。不支持写入。创建MongoDB表引擎的语法:`CREATE TABLE ... ENGINE = MongoDB(host, db, coll, user, pass)`。例如:**查看[ClickHouse中文文档](https://zhangfeidezhu.com/?p=468)获取更多教程,包括系列文章覆盖的各种表引擎解析。

MongoDB

MongoDB 引擎是只读表引擎,允许从远程 MongoDB 集合中读取数据(SELECT查询)。引擎只支持非嵌套的数据类型。不支持 INSERT 查询。

创建一张表

CREATE TABLE [IF NOT EXISTS] [db.]table_name
(
    name1 [type1],
    name2 [type2],
    ...
) ENGINE = MongoDB(host:port, database, collection, user, password);

引擎参数

  • host:port — MongoDB 服务器地址.

  • database — 数据库名称.

  • collection — 集合名称.

  • user — MongoDB 用户.

  • password — 用户密码.

用法示例

ClickHouse 中的表,从 MongoDB 集合中读取数据:

CREATE TABLE mongo_table
(
    key UInt64,
    data String
) ENGINE = MongoDB('mongo1:27017', 'test', 'simple_table', 'testuser', 'clickhouse');

查询:

SELECT COUNT() FROM mongo_table;
┌─count()─┐
│       4 │
└─────────┘

资料分享

ClickHouse经典中文文档分享

clickhouse系列文章

相关文章
|
3月前
|
SQL 数据可视化 关系型数据库
MCP与PolarDB集成技术分析:降低SQL门槛与简化数据可视化流程的机制解析
阿里云PolarDB与MCP协议融合,打造“自然语言即分析”的新范式。通过云原生数据库与标准化AI接口协同,实现零代码、分钟级从数据到可视化洞察,打破技术壁垒,提升分析效率99%,推动企业数据能力普惠化。
288 3
|
5月前
|
Java 关系型数据库 数据库连接
Spring Boot项目集成MyBatis Plus操作PostgreSQL全解析
集成 Spring Boot、PostgreSQL 和 MyBatis Plus 的步骤与 MyBatis 类似,只不过在 MyBatis Plus 中提供了更多的便利功能,如自动生成 SQL、分页查询、Wrapper 查询等。
458 3
|
5月前
|
缓存 安全 API
【深度解析】嵌入式第三方集成的优势、挑战与实现方案(2025版)
嵌入式第三方集成是将外部服务无缝嵌入自身系统的技术方案,通过API/SDK实现功能内嵌(如支付、会议),提升用户体验和开发效率。其核心优势包括操作流畅性、降低研发成本及快速迭代能力,但需解决接口稳定性、数据同步等挑战。实施时需注重架构设计(微服务、安全策略)和性能优化(缓存、异步处理)。未来趋势将向AI服务集成、无代码平台发展,同时安全合规要求更严格。建议选择可靠服务商、遵循最佳实践,并持续监控优化集成方案。
280 2
|
6月前
|
机器学习/深度学习 算法 前端开发
集成电路设计:从概念到实现的完整解析优雅草卓伊凡
集成电路设计:从概念到实现的完整解析优雅草卓伊凡
278 2
集成电路设计:从概念到实现的完整解析优雅草卓伊凡
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
918 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
数据采集 安全 数据管理
深度解析:DataHub的数据集成与管理策略
【10月更文挑战第23天】DataHub 是阿里云推出的一款数据集成与管理平台,旨在帮助企业高效地处理和管理多源异构数据。作为一名已经有一定 DataHub 使用经验的技术人员,我深知其在数据集成与管理方面的强大功能。本文将从个人的角度出发,深入探讨 DataHub 的核心技术、工作原理,以及如何实现多源异构数据的高效集成、数据清洗与转换、数据权限管理和安全控制措施。通过具体的案例分析,展示 DataHub 在解决复杂数据管理问题上的优势。
1352 1
|
6月前
|
监控 安全 Java
Java 开发中基于 Spring Boot 3.2 框架集成 MQTT 5.0 协议实现消息推送与订阅功能的技术方案解析
本文介绍基于Spring Boot 3.2集成MQTT 5.0的消息推送与订阅技术方案,涵盖核心技术栈选型(Spring Boot、Eclipse Paho、HiveMQ)、项目搭建与配置、消息发布与订阅服务实现,以及在智能家居控制系统中的应用实例。同时,详细探讨了安全增强(TLS/SSL)、性能优化(异步处理与背压控制)、测试监控及生产环境部署方案,为构建高可用、高性能的消息通信系统提供全面指导。附资源下载链接:[https://pan.quark.cn/s/14fcf913bae6](https://pan.quark.cn/s/14fcf913bae6)。
1056 0
|
12月前
|
人工智能 自然语言处理 Java
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
FastExcel 是一款基于 Java 的高性能 Excel 处理工具,专注于优化大规模数据处理,提供简洁易用的 API 和流式操作能力,支持从 EasyExcel 无缝迁移。
2636 65
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
|
消息中间件 分布式计算 关系型数据库
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
266 0
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
企业级API集成方案:基于阿里云函数计算调用DeepSeek全解析
DeepSeek R1 是一款先进的大规模深度学习模型,专为自然语言处理等复杂任务设计。它具备高效的架构、强大的泛化能力和优化的参数管理,适用于文本生成、智能问答、代码生成和数据分析等领域。阿里云平台提供了高性能计算资源、合规与数据安全、低延迟覆盖和成本效益等优势,支持用户便捷部署和调用 DeepSeek R1 模型,确保快速响应和稳定服务。通过阿里云百炼模型服务,用户可以轻松体验满血版 DeepSeek R1,并享受免费试用和灵活的API调用方式。
623 12

推荐镜像

更多