老程序员分享:Python数据模型及Pythonic编程

简介: 老程序员分享:Python数据模型及Pythonic编程

Python作为一种多范式语言,它的很多语言特性都能从其他语言上找到参照,但是Python依然形成了一套自己的“Python //代码效果参考:http://www.jhylw.com.cn/240229917.html

风格”(Pythonic)。这种Pythonic风格完全体现在 Python 的数据模型上,而数据模型中的元接口(指那些名字以两个下划线开头,以两个下划线结尾的特殊方法,例如 getitem),就是编写地道的Python代码的秘密所在。这种基于元接口实现的设计模式,也叫鸭子类型(duck typing)。

鸭子类型指的是对象的类型无关紧要,只要实现了特定的接口即可。忽略对象的真正类型,转而关注对象有没有实现所需的方法、签名和语义。Python的数据模型都支持鸭子类型,鸭子类型也是地道Python编程鼓励的风格,所以如果觉得自己想创建新的抽象基类,先试着通过常规的鸭子类型来解决问题。


数据模型其实是对 Python 框架的描述,它规范了这门语言自身构建模块的接口,这些模块包括类、函数、序列、迭代器、上下文管理器等。



得益于 Python 数据模型,自定义类的行为可以像内置类型那样自然。实现如此自然的行为,靠的不是继承,而是元接口。Python给类设计了大量的元接口,具体请参看Python 语言参考手册中的“Data Model”章节。下面是一些类的元接口的展示。


"""


]> v1 = Vector2d(3, 4)


通过元接口iter支持拆包


]> x, y = v1


]> x, y


(3.0, 4.0)


通过元接口repr支持字面量表示和repr函数


]> v1


Vector2d(3.0, 4.0)


]> v1_clone = eval(repr(v1))


]> v1 == v1_clone


True


通过元接口str支持print函数


]> print(v1)


(3.0, 4.0)


通过元接口bytes支持bytes函数


]> octets = bytes(v1)


]> octets


b'd\x00\x00\x00\x00\x00\x00\x08@\x00\x00\x00\x00\x00\x00\x10@'


通过元接口abs支持abs函数


]> abs(v1)


5.0


通过元接口bool支持bool函数


]> bool(v1), bool(Vector2d(0, 0))


(True, False)


通过property支持可读属性


]> v1.x, v1.y


(3.0, 4.0)


]> v1.x = 123


Traceback (most recent call last):


...


AttributeError: can't set attribute


通过hash支持对象可散列,支持dict、set等函数


]> hash(v1)


7


]> set(v1)


{3.0, 4.0}


]> {v1: 'point1'}


{Vector2d(3.0, 4.0): 'point1'}


"""


from array import array


import math


class Vector2d:


typecode = 'd'


def init(self, x, y):


self.x = float(x)


self.y = float(y)


@property


def x(self):


return self.x


@property


def y(self):


return self.y


def iter(self):


return (i for i in (self.x, self.y))


def repr(self):


class_name = type(self).name


return '{}({!r}, {!r})'.format(class_name, *self)


def str(self):


return str(tuple(self))


def bytes(self):


return (bytes(【ord(self.typecode)】) +


bytes(array(self.typecode, self)))


def eq(self, other):


return tuple(self) == tuple(other)


def hash(self):


return hash(self.x) ^ hash(self.y)


def abs(self):


return math.hypot(self.x, self.y)


def bool(self):


return bool(abs(self))


函数


Python中一切皆对象,函数也不例外,而且Python中的函数还是一等对象。函数可以理解为一种可调用对象语法糖。


可调用对象的元接口是call。如果一个类定义了 call 方法,那么它的实例可以作为函数调用。示例如下。


"""


]> pickcard = Cards(range(52))


]> pickcard()


51


]> pickcard()


50


]> callable(pickcard)


True


"""


class Cards:


def init(self, items):


self._items = list(items)


def call(self):


return self._items.pop()


序列


Python 的序列数据模型的元接口很多,但是对象只需要实现 lengetitem 两个方法,就能用在绝大部分期待序列的地方,如迭代,【】运算符、切片、for i in 等操作。示例如下:


"""


]> poker = Poker()


支持len运算


]> len(poker)


52


支持【】运算


]> poker【0】


Card(rank='2', suit='spades')


]> poker【-1】


Card(rank='A', suit='hearts')


支持切片运算


]> poker【12::13】


【Card(rank='A', suit='spades'), Card(rank='A', suit='diamonds'), Card(rank='A', suit='clubs'), Card(rank='A', suit='hearts')】


支持 for i in 运算


]> for card in poker: print(card) # doctest: +ELLIPSIS


...


Card(rank='2', suit='spades')


Card(rank='3', suit='spades')


Card(rank='4', suit='spades')


...


支持 in 运算


]> Card('7', 'hearts') in poker


True


"""


import collections


Card = collections.namedtuple('Card', 【'rank', 'suit'】)


class Poker:


ranks = 【str(n) for n in range(2, 11)】 + list('JQKA')


suits = 'spades diamonds clubs hearts'.split()


def init(self):


self._cards = 【Card(rank, suit) for suit in self.suits


for rank in self.ranks】


def len(self):


return len(self._cards)


def getitem(self, position):


return self._cards【position】


从测试用例上可以看出它具有序列所有特性,即便它是 object 的子类也无妨。因为它的行为像序列,那我们就可以说它是序列。


迭代


Python中,可迭代对象的元接口是iter。迭代器可以从可迭代的对象中获取,iternext是它的2个主要的元接口。iter 方法使对象支持迭代,next 方法返回序列中的下一个元素。如果没有元素了,那么抛出 StopIteration 异常。


迭代器可以迭代,但是可迭代的对象不是迭代器,也一定不能是自身的迭代器。也就是说,可迭代的对象必须实现 iter 方法,但不能实现 next 方法。


只要实现iter接口的对象,就是迭代鸭子类型,自然就支持所有的迭代运算。示例如下:


"""


]> s = Sentence('hello world')


]> s


Sentence('hello world')


支持迭代list运算


]> list(s)


【'hello', 'world'】


获取迭代器


]> it = iter(s)


支持迭代器next运算


]> next(it)


'hello'


]> next(it)


'world'


]> next(it)


Traceback (most recent call last):


...


StopIteration


支持迭代for运算


]> for w in s: print(w)


hello


world


"""


import re


import reprlib


RE_WORD = re.compile('\w+')


class Sentence:


def init(self, text):


self.text = text


def repr(self):


return 'Sentence(%s)' % reprlib.repr(self.text)


//代码效果参考:http://www.jhylw.com.cn/020323445.html

def iter(self):

word_iter = RE_WORD.finditer(self.text)


return SentenceIter(word_iter)


class SentenceIter():


def init(self, word_iter):


self.word_iter = word_iter


def next(self):


match = next(self.word_iter)


return match.group()


def iter(self):


return self


上面这个例子中,可迭代对象Sentence通过定义迭代器SentenceIter的方式实现。更Pythonic的做法是通过生成器yield来实现。下面是一个示例,能通过上面的所有测试用例,但代码更加精简。


RE_WORD = re.compile('\w+')


class Sentence:


def init(self, text):


self.text = text


def repr(self):


return 'Sentence(%s)' % reprlib.repr(self.text)


def iter(self):


for match in RE_WORD.finditer(self.text):


yield match.group()


上下文管理器


Python的with关键字是上下文管理器语法糖,上下文管理器协议包含 enterexit 两个方法。with 语句开始运行时,会在上下文管理器对象上调用 enter 方法。with 语句运行结束后,会在上下文管理器对象上调用 exit 方法,以此扮演 finally 子句的角色。可以看出,上下文管理器简化了 try/finally 模式。下面是一个示例。


"""


ReversePrint对象的上下文管理,进入with块后,标准输出反序打印,


退出with块后,标准输出恢复正常状态。


]> with ReversePrint() as what:


... print('Hello world!')


!dlrow olleH


]> print('Hello world!')


Hello world!


"""


class ReversePrint:


def enter(self):


import sys


self.original_write = sys.stdout.write


sys.stdout.write = self.reverse_write


return 'JABBERWOCKY'


def reverse_write(self, text):


self.original_write(text【::-1】)


def exit(self, exc_type, exc_value, traceback):


import sys


sys.stdout.write = self.original_write


if exc_type is ZeroDivisionError:


print('Please DO NOT divide by zero!')


return True


作者:wahaha02


出处:


本文为博主原创文章,内容欢迎转载或引用,但请注明出处。

相关文章
|
1天前
|
数据采集 数据挖掘 数据处理
Python中实现简单爬虫并处理数据
【9月更文挑战第31天】本文将引导读者理解如何通过Python创建一个简单的网络爬虫,并展示如何处理爬取的数据。我们将讨论爬虫的基本原理、使用requests和BeautifulSoup库进行网页抓取的方法,以及如何使用pandas对数据进行清洗和分析。文章旨在为初学者提供一个易于理解的实践指南,帮助他们快速掌握网络数据抓取的基本技能。
11 3
|
3天前
|
存储 索引 Python
python中的数据容器
python中的数据容器
|
3天前
|
存储 开发者 Python
探索Python编程的奥秘
【9月更文挑战第29天】本文将带你走进Python的世界,通过深入浅出的方式,解析Python编程的基本概念和核心特性。我们将一起探讨变量、数据类型、控制结构、函数等基础知识,并通过实际代码示例,让你更好地理解和掌握Python编程。无论你是编程新手,还是有一定基础的开发者,都能在这篇文章中找到新的启示和收获。让我们一起探索Python编程的奥秘,开启编程之旅吧!
|
3天前
|
数据采集 存储 监控
如何使用 Python 爬取京东商品数据
如何使用 Python 爬取京东商品数据
13 0
|
4天前
|
算法 Python
Python编程的函数—内置函数
Python编程的函数—内置函数
|
4天前
|
存储 索引 Python
Python编程的常用数据结构—列表
Python编程的常用数据结构—列表
|
4天前
|
数据挖掘 Python
Python数据挖掘编程基础8
在Python中,默认环境下并不会加载所有功能,需要手动导入库以增强功能。Python内置了诸多强大库,例如`math`库可用于复杂数学运算。导入库不仅限于`import 库名`,还可以通过别名简化调用,如`import math as m`;也可指定导入库中的特定函数,如`from math import exp as e`;甚至直接导入库中所有函数`from math import *`。但需注意,后者可能引发命名冲突。读者可通过`help('modules')`查看已安装模块。
9 0
|
4天前
|
人工智能 数据挖掘 Serverless
Python数据挖掘编程基础
函数式编程中的`reduce`函数用于对可迭代对象中的元素进行累积计算,不同于逐一遍历的`map`函数。例如,在Python3中,计算n的阶乘可以使用`reduce`(需从`funtools`库导入)实现,也可用循环命令完成。另一方面,`filter`函数则像一个过滤器,用于筛选列表中符合条件的元素,同样地功能也可以通过列表解析来实现。使用这些函数不仅使代码更加简洁,而且由于其内部循环机制,执行效率通常高于普通的`for`或`while`循环。
9 0
|
4天前
|
分布式计算 数据挖掘 Serverless
Python数据挖掘编程基础6
函数式编程(Functional Programming)是一种编程范型,它将计算机运算视为数学函数计算,避免程序状态及易变对象的影响。在Python中,函数式编程主要通过`lambda`、`map`、`reduce`、`filter`等函数实现。例如,对于列表`a=[5,6,7]`,可通过列表解析`b=[i+3 for i in a]`或`map`函数`b=map(lambda x:x+3, a)`实现元素加3的操作,两者输出均为`[8,9,10]`。尽管列表解析代码简洁,但其本质仍是for循环,在Python中效率较低;而`map`函数不仅功能相同,且执行效率更高。
6 0
|
4天前
|
数据挖掘 Python
Python数据挖掘编程基础5
函数是Python中用于提高代码效率和减少冗余的基本数据结构,通过封装程序逻辑实现结构化编程。用户可通过自定义或函数式编程方式设计函数。在Python中,使用`def`关键字定义函数,如`def pea(x): return x+1`,且其返回值形式多样,可为列表或多个值。此外,Python还支持使用`lambda`定义简洁的行内函数,例如`c=lambda x:x+1`。
9 0
下一篇
无影云桌面