深入解析实时数仓Doris:Rollup上卷表与查询

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: 深入解析实时数仓Doris:Rollup上卷表与查询

一、基本概念

ROLLUP 在多维分析中是“上卷”的意思,即将数据按某种指定的粒度进行进一步聚合。

在 Doris 中,我们将用户通过建表语句创建出来的表称为 Base 表(Base Table)。Base 表中保存着按用户建表语句指定的方式存储的基础数据。

在 Base 表之上,我们可以创建任意多个 ROLLUP 表。这些 ROLLUP 的数据是基于 Base 表产生的,并且在物理上是独立存储的。

ROLLUP 表的基本作用,在于在 Base 表的基础上,获得更粗粒度的聚合数据。

下面我们用示例详细说明在不同数据模型中的 ROLLUP 表及其作用。

二、Aggregate 和 Unique 模型中的 ROLLUP

因为 Unique 只是 Aggregate 模型的一个特例,所以这里我们不加以区别。

示例1:获得每个用户的总消费

接 数据模型Aggregate 模型小节的示例2,Base 表结构如下:

ColumnName  Type  AggregationType Comment
user_id LARGEINT    用户id
date  DATE    数据灌入日期
timestamp DATETIME    数据灌入时间,精确到秒
city  VARCHAR(20)   用户所在城市
age SMALLINT    用户年龄
sex TINYINT   用户性别
last_visit_date DATETIME  REPLACE 用户最后一次访问时间
cost  BIGINT  SUM 用户总消费
max_dwell_time  INT MAX 用户最大停留时间
min_dwell_time  INT MIN 用户最小停留时间

存储的数据如下:

user_id date  timestamp city  age sex last_visit_date cost  max_dwell_time  min_dwell_time
10000 2017-10-01  2017-10-01 08:00:05 北京  20  0 2017-10-01 06:00:00 20  10  10
10000 2017-10-01  2017-10-01 09:00:05 北京  20  0 2017-10-01 07:00:00 15  2 2
10001 2017-10-01  2017-10-01 18:12:10 北京  30  1 2017-10-01 17:05:45 2 22  22
10002 2017-10-02  2017-10-02 13:10:00 上海  20  1 2017-10-02 12:59:12 200 5 5
10003 2017-10-02  2017-10-02 13:15:00 广州  32  0 2017-10-02 11:20:00 30  11  11
10004 2017-10-01  2017-10-01 12:12:48 深圳  35  0 2017-10-01 10:00:15 100 3 3
10004 2017-10-03  2017-10-03 12:38:20 深圳  35  0 2017-10-03 10:20:22 11  6 6

在此基础上,我们创建一个 ROLLUP:

ColumnName
user_id
cost

该 ROLLUP 只包含两列:user_id 和 cost。则创建完成后,该 ROLLUP 中存储的数据如下:

user_id cost
10000 35
10001 2
10002 200
10003 30
10004 111

可以看到,ROLLUP 中仅保留了每个 user_id,在 cost 列上的 SUM 的结果。那么当我们进行如下查询时:

SELECT user_id, sum(cost) FROM table GROUP BY user_id;

Doris 会自动命中这个 ROLLUP 表,从而只需扫描极少的数据量,即可完成这次聚合查询。

示例2:获得不同城市,不同年龄段用户的总消费、最长和最短页面驻留时间

紧接示例1。我们在 Base 表基础之上,再创建一个 ROLLUP:

ColumnName  Type  AggregationType Comment
city  VARCHAR(20)   用户所在城市
age SMALLINT    用户年龄
cost  BIGINT  SUM 用户总消费
max_dwell_time  INT MAX 用户最大停留时间
min_dwell_time  INT MIN 用户最小停留时间

则创建完成后,该 ROLLUP 中存储的数据如下:

city  age cost  max_dwell_time  min_dwell_time
北京  20  35  10  2
北京  30  2 22  22
上海  20  200 5 5
广州  32  30  11  11
深圳  35  111 6 3

当我们进行如下这些查询时:

mysql> SELECT city, age, sum(cost), max(max_dwell_time), min(min_dwell_time) FROM table GROUP BY city, age;
mysql> SELECT city, sum(cost), max(max_dwell_time), min(min_dwell_time) FROM table GROUP BY city;
mysql> SELECT city, age, sum(cost), min(min_dwell_time) FROM table GROUP BY city, age;


Doris 执行这些sql时会自动命中这个 ROLLUP 表。

三、Duplicate 模型中的 ROLLUP

因为 Duplicate 模型没有聚合的语意。所以该模型中的 ROLLUP,已经失去了“上卷”这一层含义。而仅仅是作为调整列顺序,以命中前缀索引的作用。我们将在前缀索引详细介绍前缀索引,以及如何使用ROLLUP改变前缀索引,以获得更好的查询效率。

四、ROLLUP 调整前缀索引

因为建表时已经指定了列顺序,所以一个表只有一种前缀索引。这对于使用其他不能命中前缀索引的列作为条件进行的查询来说,效率上可能无法满足需求。因此,我们可以通过创建 ROLLUP 来人为的调整列顺序。举例说明:

Base 表结构如下:

ColumnName  Type
user_id BIGINT
age INT
message VARCHAR(100)
max_dwell_time  DATETIME
min_dwell_time  DATETIME

我们可以在此基础上创建一个 ROLLUP 表:

ColumnName  Type
age INT
user_id BIGINT
message VARCHAR(100)
max_dwell_time  DATETIME
min_dwell_time  DATETIME

可以看到,ROLLUP 和 Base 表的列完全一样,只是将 user_id 和 age 的顺序调换了。那么当我们进行如下查询时:

mysql> SELECT * FROM table where age=20 and message LIKE "%error%";

会优先选择 ROLLUP 表,因为 ROLLUP 的前缀索引匹配度更高。

五、ROLLUP使用说明

ROLLUP 最根本的作用是提高某些查询的查询效率(无论是通过聚合来减少数据量,还是修改列顺序以匹配前缀索引)。因此 ROLLUP 的含义已经超出了 “上卷” 的范围。这也是为什么我们在源代码中,将其命名为 Materialized Index(物化索引)的原因。

ROLLUP 是附属于 Base 表的,可以看做是 Base 表的一种辅助数据结构。用户可以在 Base 表的基础上,创建或删除 ROLLUP,但是不能在查询中显式的指定查询某 ROLLUP。是否命中 ROLLUP 完全由 Doris 系统自动决定。

ROLLUP 的数据是独立物理存储的。因此,创建的 ROLLUP 越多,占用的磁盘空间也就越大。同时对导入速度也会有影响(导入的ETL阶段会自动产生所有 ROLLUP 的数据),但是不会降低查询效率(只会更好)。

ROLLUP 的数据更新与 Base 表是完全同步的。用户无需关心这个问题。

ROLLUP 中列的聚合方式,与 Base 表完全相同。在创建 ROLLUP 无需指定,也不能修改。

查询能否命中 ROLLUP 的一个必要条件(非充分条件)是,查询所涉及的所有列(包括 select list 和 where 中的查询条件列等)都存在于该 ROLLUP 的列中。否则,查询只能命中 Base 表。

某些类型的查询(如 count(*))在任何条件下,都无法命中 ROLLUP。

可以通过 EXPLAIN your_sql; 命令获得查询执行计划,在执行计划中,查看是否命中 ROLLUP。

可以通过 DESC tbl_name ALL; 语句显示 Base 表和所有已创建完成的 ROLLUP。

六、查询

在 Doris 里 Rollup 作为一份聚合物化视图,其在查询中可以起到两个作用:

  • 索引
  • 聚合数据(仅用于聚合模型,即aggregate key)

但是为了命中 Rollup 需要满足一定的条件,并且可以通过执行计划中 ScanNode 节点的 PreAggregation 的值来判断是否可以命中 Rollup,以及 Rollup 字段来判断命中的是哪一张 Rollup 表。

6.1 索引

前面的前缀索引中已经介绍过 Doris 的前缀索引,即 Doris 会把 Base/Rollup 表中的前 36 个字节(有 varchar 类型则可能导致前缀索引不满 36 个字节,varchar 会截断前缀索引,并且最多使用 varchar 的 20 个字节)在底层存储引擎单独生成一份排序的稀疏索引数据(数据也是排序的,用索引定位,然后在数据中做二分查找),然后在查询的时候会根据查询中的条件来匹配每个 Base/Rollup 的前缀索引,并且选择出匹配前缀索引最长的一个 Base/Rollup。

 -----> 从左到右匹配
+----+----+----+----+----+----+
| c1 | c2 | c3 | c4 | c5 |... |

如上图,取查询中 where 以及 on 上下推到 ScanNode 的条件,从前缀索引的第一列开始匹配,检查条件中是否有这些列,有则累计匹配的长度,直到匹配不上或者36字节结束(varchar类型的列只能匹配20个字节,并且会匹配不足36个字节截断前缀索引),然后选择出匹配长度最长的一个

Base/Rollup,下面举例说明,创建了一张Base表以及四张rollup:

+---------------+-------+--------------+------+-------+---------+-------+
| IndexName     | Field | Type         | Null | Key   | Default | Extra |
+---------------+-------+--------------+------+-------+---------+-------+
| test          | k1    | TINYINT      | Yes  | true  | N/A     |       |
|               | k2    | SMALLINT     | Yes  | true  | N/A     |       |
|               | k3    | INT          | Yes  | true  | N/A     |       |
|               | k4    | BIGINT       | Yes  | true  | N/A     |       |
|               | k5    | DECIMAL(9,3) | Yes  | true  | N/A     |       |
|               | k6    | CHAR(5)      | Yes  | true  | N/A     |       |
|               | k7    | DATE         | Yes  | true  | N/A     |       |
|               | k8    | DATETIME     | Yes  | true  | N/A     |       |
|               | k9    | VARCHAR(20)  | Yes  | true  | N/A     |       |
|               | k10   | DOUBLE       | Yes  | false | N/A     | MAX   |
|               | k11   | FLOAT        | Yes  | false | N/A     | SUM   |
|               |       |              |      |       |         |       |
| rollup_index1 | k9    | VARCHAR(20)  | Yes  | true  | N/A     |       |
|               | k1    | TINYINT      | Yes  | true  | N/A     |       |
|               | k2    | SMALLINT     | Yes  | true  | N/A     |       |
|               | k3    | INT          | Yes  | true  | N/A     |       |
|               | k4    | BIGINT       | Yes  | true  | N/A     |       |
|               | k5    | DECIMAL(9,3) | Yes  | true  | N/A     |       |
|               | k6    | CHAR(5)      | Yes  | true  | N/A     |       |
|               | k7    | DATE         | Yes  | true  | N/A     |       |
|               | k8    | DATETIME     | Yes  | true  | N/A     |       |
|               | k10   | DOUBLE       | Yes  | false | N/A     | MAX   |
|               | k11   | FLOAT        | Yes  | false | N/A     | SUM   |
|               |       |              |      |       |         |       |
| rollup_index2 | k9    | VARCHAR(20)  | Yes  | true  | N/A     |       |
|               | k2    | SMALLINT     | Yes  | true  | N/A     |       |
|               | k1    | TINYINT      | Yes  | true  | N/A     |       |
|               | k3    | INT          | Yes  | true  | N/A     |       |
|               | k4    | BIGINT       | Yes  | true  | N/A     |       |
|               | k5    | DECIMAL(9,3) | Yes  | true  | N/A     |       |
|               | k6    | CHAR(5)      | Yes  | true  | N/A     |       |
|               | k7    | DATE         | Yes  | true  | N/A     |       |
|               | k8    | DATETIME     | Yes  | true  | N/A     |       |
|               | k10   | DOUBLE       | Yes  | false | N/A     | MAX   |
|               | k11   | FLOAT        | Yes  | false | N/A     | SUM   |
|               |       |              |      |       |         |       |
| rollup_index3 | k4    | BIGINT       | Yes  | true  | N/A     |       |
|               | k5    | DECIMAL(9,3) | Yes  | true  | N/A     |       |
|               | k6    | CHAR(5)      | Yes  | true  | N/A     |       |
|               | k1    | TINYINT      | Yes  | true  | N/A     |       |
|               | k2    | SMALLINT     | Yes  | true  | N/A     |       |
|               | k3    | INT          | Yes  | true  | N/A     |       |
|               | k7    | DATE         | Yes  | true  | N/A     |       |
|               | k8    | DATETIME     | Yes  | true  | N/A     |       |
|               | k9    | VARCHAR(20)  | Yes  | true  | N/A     |       |
|               | k10   | DOUBLE       | Yes  | false | N/A     | MAX   |
|               | k11   | FLOAT        | Yes  | false | N/A     | SUM   |
|               |       |              |      |       |         |       |
| rollup_index4 | k4    | BIGINT       | Yes  | true  | N/A     |       |
|               | k6    | CHAR(5)      | Yes  | true  | N/A     |       |
|               | k5    | DECIMAL(9,3) | Yes  | true  | N/A     |       |
|               | k1    | TINYINT      | Yes  | true  | N/A     |       |
|               | k2    | SMALLINT     | Yes  | true  | N/A     |       |
|               | k3    | INT          | Yes  | true  | N/A     |       |
|               | k7    | DATE         | Yes  | true  | N/A     |       |
|               | k8    | DATETIME     | Yes  | true  | N/A     |       |
|               | k9    | VARCHAR(20)  | Yes  | true  | N/A     |       |
|               | k10   | DOUBLE       | Yes  | false | N/A     | MAX   |
|               | k11   | FLOAT        | Yes  | false | N/A     | SUM   |
+---------------+-------+--------------+------+-------+---------+-------+

这五张表的前缀索引分别为

Base(k1 ,k2, k3, k4, k5, k6, k7)

rollup_index1(k9)

rollup_index2(k9)

rollup_index3(k4, k5, k6, k1, k2, k3, k7)

rollup_index4(k4, k6, k5, k1, k2, k3, k7)

能用的上前缀索引的列上的条件需要是 = < > <= >= in between 这些并且这些条件是并列的且关系使用 and 连接,对于or、!= 等这些不能命中,然后看以下查询:

SELECT * FROM test WHERE k1 = 1 AND k2 > 3;

有 k1 以及 k2 上的条件,检查只有 Base 的第一列含有条件里的 k1,所以匹配最长的前缀索引即 test,explain一下:

|   0:OlapScanNode                                                                                                                                                                                                                                                                                                                                                                                                 
|      TABLE: test                                                                                                                                                                                                                                                                                                                                                                                                  
|      PREAGGREGATION: OFF. Reason: No AggregateInfo                                                                                                                                                                                                                                                                                                                                                                
|      PREDICATES: `k1` = 1, `k2` > 3                                                                                                                                                                                                                                                                                                                                                                               
|      partitions=1/1                                                                                                                                                                                                                                                                                                                                                                                               
|      rollup: test                                                                                                                                                                                                                                                                                                                                                                                                 
|      buckets=1/10                                                                                                                                                                                                                                                                                                                                                                                                 
|      cardinality=-1                                                                                                                                                                                                                                                                                                                                                                                               
|      avgRowSize=0.0                                                                                                                                                                                                                                                                                                                                                                                               
|      numNodes=0                                                                                                                                                                                                                                                                                                                                                                                                   
|      tuple ids: 0

再看以下查询:

SELECT * FROM test WHERE k4 = 1 AND k5 > 3;

有 k4 以及 k5 的条件,检查 rollup_index3、rollup_index4 的第一列含有 k4,但是 rollup_index3 的第二列含有k5,所以匹配的前缀索引最长。

|   0:OlapScanNode                                                                                                                                                                                                                                                                                                                                                                                                
|      TABLE: test                                                                                                                                                                                                                                                                                                                                                                                                  
|      PREAGGREGATION: OFF. Reason: No AggregateInfo                                                                                                                                                                                                                                                                                                                                                                
|      PREDICATES: `k4` = 1, `k5` > 3                                                                                                                                                                                                                                                                                                                                                                              
|      partitions=1/1                                                                                                                                                                                                                                                                                                                                                                                               
|      rollup: rollup_index3                                                                                                                                                                                                                                                                                                                                                                                        
|      buckets=10/10                                                                                                                                                                                                                                                                                                                                                                                                
|      cardinality=-1                                                                                                                                                                                                                                                                                                                                                                                               
|      avgRowSize=0.0                                                                                                                                                                                                                                                                                                                                                                                               
|      numNodes=0                                                                                                                                                                                                                                                                                                                                                                                                   
|      tuple ids: 0

现在我们尝试匹配含有 varchar 列上的条件,如下:

SELECT * FROM test WHERE k9 IN ("xxx", "yyyy") AND k1 = 10;

有 k9 以及 k1 两个条件,rollup_index1 以及 rollup_index2 的第一列都含有 k9,按理说这里选择这两个 rollup 都可以命中前缀索引并且效果是一样的随机选择一个即可(因为这里 varchar 刚好20个字节,前缀索引不足36个字节被截断),但是当前策略这里还会继续匹配 k1,因为 rollup_index1 的第二列为 k1,所以选择了 rollup_index1,其实后面的 k1 条件并不会起到加速的作用。(如果对于前缀索引外的条件需要其可以起到加速查询的目的,可以通过建立 Bloom Filter 过滤器加速。一般对于字符串类型建立即可,因为 Doris 针对列存在 Block 级别对于整型、日期已经有 Min/Max 索引) 以下是explain 的结果。

|   0:OlapScanNode                                                                                                                                                                                                                                                                                                                                                                                                  
|      TABLE: test                                                                                                                                                                                                                                                                                                                                                                                                  
|      PREAGGREGATION: OFF. Reason: No AggregateInfo                                                                                                                                                                                                                                                                                                                                                                
|      PREDICATES: `k9` IN ('xxx', 'yyyy'), `k1` = 10                                                                                                                                                                                                                                                                                                                                                               
|      partitions=1/1                                                                                                                                                                                                                                                                                                                                                                                               
|      rollup: rollup_index1                                                                                                                                                                                                                                                                                                                                                                                        
|      buckets=1/10                                                                                                                                                                                                                                                                                                                                                                                                 
|      cardinality=-1                                                                                                                                                                                                                                                                                                                                                                                               
|      avgRowSize=0.0                                                                                                                                                                                                                                                                                                                                                                                               
|      numNodes=0                                                                                                                                                                                                                                                                                                                                                                                                   
|      tuple ids: 0

最后看一个多张Rollup都可以命中的查询:

SELECT * FROM test WHERE k4 < 1000 AND k5 = 80 AND k6 >= 10000;

有 k4,k5,k6 三个条件,rollup_index3 以及 rollup_index4 的前3列分别含有这三列,所以两者匹配的前缀索引长度一致,选取两者都可以,当前默认的策略为选取了比较早创建的一张 rollup,这里为 rollup_index3。

|   0:OlapScanNode                                                                                                                                                                                                                                                                                                                                                                                                  
|      TABLE: test                                                                                                                                                                                                                                                                                                                                                                                                  
|      PREAGGREGATION: OFF. Reason: No AggregateInfo                                                                                                                                                                                                                                                                                                                                                                
|      PREDICATES: `k4` < 1000, `k5` = 80, `k6` >= 10000.0                                                                                                                                                                                                                                                                                                                                                          
|      partitions=1/1                                                                                                                                                                                                                                                                                                                                                                                               
|      rollup: rollup_index3                                                                                                                                                                                                                                                                                                                                                                                        
|      buckets=10/10                                                                                                                                                                                                                                                                                                                                                                                                
|      cardinality=-1                                                                                                                                                                                                                                                                                                                                                                                               
|      avgRowSize=0.0                                                                                                                                                                                                                                                                                                                                                                                               
|      numNodes=0                                                                                                                                                                                                                                                                                                                                                                                                   
|      tuple ids: 0

如果稍微修改上面的查询为:

SELECT * FROM test WHERE k4 < 1000 AND k5 = 80 OR k6 >= 10000;

则这里的查询不能命中前缀索引。(甚至 Doris 存储引擎内的任何 Min/Max,BloomFilter 索引都不能起作用)

6.2 聚合数据

当然一般的聚合物化视图其聚合数据的功能是必不可少的,这类物化视图对于聚合类查询或报表类查询都有非常大的帮助,要命中聚合物化视图需要下面一些前提:


查询或者子查询中涉及的所有列都存在一张独立的 Rollup 中。

如果查询或者子查询中有 Join,则 Join 的类型需要是 Inner join。

以下是可以命中Rollup的一些聚合查询的种类,

列类型 查询类型  Sum Distinct/Count Distinct Min Max APPROX_COUNT_DISTINCT
Key false true  true  true  true
Value(Sum)  true  false false false false
Value(Replace)  false false false false false
Value(Min)  false false true  false false
Value(Max)  false false false true  false


如果符合上述条件,则针对聚合模型在判断命中 Rollup 的时候会有两个阶段:

首先通过条件匹配出命中前缀索引索引最长的 Rollup 表,见上述索引策略。

然后比较 Rollup 的行数,选择最小的一张 Rollup。

如下 Base 表以及 Rollup:

+-------------+-------+--------------+------+-------+---------+-------+
| IndexName   | Field | Type         | Null | Key   | Default | Extra |
+-------------+-------+--------------+------+-------+---------+-------+
| test_rollup | k1    | TINYINT      | Yes  | true  | N/A     |       |
|             | k2    | SMALLINT     | Yes  | true  | N/A     |       |
|             | k3    | INT          | Yes  | true  | N/A     |       |
|             | k4    | BIGINT       | Yes  | true  | N/A     |       |
|             | k5    | DECIMAL(9,3) | Yes  | true  | N/A     |       |
|             | k6    | CHAR(5)      | Yes  | true  | N/A     |       |
|             | k7    | DATE         | Yes  | true  | N/A     |       |
|             | k8    | DATETIME     | Yes  | true  | N/A     |       |
|             | k9    | VARCHAR(20)  | Yes  | true  | N/A     |       |
|             | k10   | DOUBLE       | Yes  | false | N/A     | MAX   |
|             | k11   | FLOAT        | Yes  | false | N/A     | SUM   |
|             |       |              |      |       |         |       |
| rollup2     | k1    | TINYINT      | Yes  | true  | N/A     |       |
|             | k2    | SMALLINT     | Yes  | true  | N/A     |       |
|             | k3    | INT          | Yes  | true  | N/A     |       |
|             | k10   | DOUBLE       | Yes  | false | N/A     | MAX   |
|             | k11   | FLOAT        | Yes  | false | N/A     | SUM   |
|             |       |              |      |       |         |       |
| rollup1     | k1    | TINYINT      | Yes  | true  | N/A     |       |
|             | k2    | SMALLINT     | Yes  | true  | N/A     |       |
|             | k3    | INT          | Yes  | true  | N/A     |       |
|             | k4    | BIGINT       | Yes  | true  | N/A     |       |
|             | k5    | DECIMAL(9,3) | Yes  | true  | N/A     |       |
|             | k10   | DOUBLE       | Yes  | false | N/A     | MAX   |
|             | k11   | FLOAT        | Yes  | false | N/A     | SUM   |
+-------------+-------+--------------+------+-------+---------+-------+

看以下查询:

SELECT SUM(k11) FROM test_rollup WHERE k1 = 10 AND k2 > 200 AND k3 in (1,2,3);


首先判断查询是否可以命中聚合的 Rollup表,经过查上面的图是可以的,然后条件中含有 k1,k2,k3 三个条件,这三个条件 test_rollup、rollup1、rollup2 的前三列都含有,所以前缀索引长度一致,然后比较行数显然 rollup2 的聚合程度最高行数最少所以选取 rollup2。

|   0:OlapScanNode                                          |
|      TABLE: test_rollup                                   |
|      PREAGGREGATION: ON                                   |
|      PREDICATES: `k1` = 10, `k2` > 200, `k3` IN (1, 2, 3) |
|      partitions=1/1                                       |
|      rollup: rollup2                                      |
|      buckets=1/10                                         |
|      cardinality=-1                                       |
|      avgRowSize=0.0                                       |
|      numNodes=0                                           |
|      tuple ids: 0                                         |


相关文章
|
4月前
|
存储 SQL 缓存
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
快手 OLAP 系统为内外多个场景提供数据服务,每天承载近 10 亿的查询请求。原有湖仓分离架构,由离线数据湖和实时数仓组成,面临存储冗余、资源抢占、治理复杂、查询调优难等问题。通过引入 Apache Doris 湖仓一体能力,替换了 Clickhouse ,升级为湖仓一体架构,并结合 Doris 的物化视图改写能力和自动物化服务,实现高性能的数据查询以及灵活的数据治理。
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
|
4月前
|
存储 Cloud Native 关系型数据库
Ganos实时热力聚合查询能力解析与最佳实践
Ganos是由阿里云数据库产品事业部与飞天实验室共同研发的新一代云原生位置智能引擎,集成于PolarDB-PG、Lindorm、AnalyticDB-PG和RDS-PG等核心产品中。Ganos拥有十大核心引擎,涵盖几何、栅格、轨迹等多种数据处理能力,实现了多模多态数据的一体化存储、查询与分析。本文重点介绍了Ganos的热力瓦片(HMT)技术,通过实时热力聚合查询与动态输出热力瓦片,无需预处理即可实现大规模数据秒级聚合与渲染,适用于交通、城市管理、共享出行等多个领域。HMT相比传统网格聚合技术具有高效、易用的优势,并已在多个真实场景中验证其卓越性能。
76 0
|
3天前
|
存储 数据库 对象存储
新版本发布:查询更快,兼容更强,TDengine 3.3.4.3 功能解析
经过 TDengine 研发团队的精心打磨,TDengine 3.3.4.3 版本正式发布。作为时序数据库领域的领先产品,TDengine 一直致力于为用户提供高效、稳定、易用的解决方案。本次版本更新延续了一贯的高标准,为用户带来了多项实用的新特性,并对系统性能进行了深度优化。
14 3
|
2月前
|
存储 SQL 缓存
AnalyticDB 实时数仓架构解析
AnalyticDB 是阿里云自研的 OLAP 数据库,广泛应用于行为分析、数据报表、金融风控等应用场景,可支持 100 trillion 行记录、10PB 量级的数据规模,亚秒级完成交互式分析查询。本文是对 《 AnalyticDB: Real-time OLAP Database System at Alibaba Cloud 》的学习总结。
72 1
|
3月前
|
域名解析 网络协议 安全
DNS查询工具简介
DNS查询工具简介
129 4
|
3月前
|
存储 SQL 缓存
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
从 3.0 系列版本开始,Apache Doris 开始支持存算分离模式,用户可以在集群部署时选择采用存算一体模式或存算分离模式。基于云原生存算分离的架构,用户可以通过多计算集群实现查询负载间的物理隔离以及读写负载隔离,并借助对象存储或 HDFS 等低成本的共享存储系统来大幅降低存储成本。
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
|
4月前
|
域名解析 网络协议 安全
DNS查询工具简介
DNS查询工具简介
115 4
|
5月前
|
存储 消息中间件 运维
招联金融基于 Apache Doris 数仓升级:单集群 QPS 超 10w,存储成本降低 70%
招联内部已有 40+ 个项目使用 Apache Doris ,拥有超百台集群节点,个别集群峰值 QPS 可达 10w+ 。通过应用 Doris ,招联金融在多场景中均有显著的收益,比如标签关联计算效率相较之前有 6 倍的提升,同等规模数据存储成本节省超 2/3,真正实现了降本提效。
招联金融基于 Apache Doris 数仓升级:单集群 QPS 超 10w,存储成本降低 70%
|
3月前
|
SQL 数据可视化 BI
SQL语句及查询结果解析:技巧与方法
在数据库管理和数据分析中,SQL语句扮演着至关重要的角色
|
3月前
|
存储 缓存 数据处理
深度解析:Hologres分布式存储引擎设计原理及其优化策略
【10月更文挑战第9天】在大数据时代,数据的规模和复杂性不断增加,这对数据库系统提出了更高的要求。传统的单机数据库难以应对海量数据处理的需求,而分布式数据库通过水平扩展提供了更好的解决方案。阿里云推出的Hologres是一个实时交互式分析服务,它结合了OLAP(在线分析处理)与OLTP(在线事务处理)的优势,能够在大规模数据集上提供低延迟的数据查询能力。本文将深入探讨Hologres分布式存储引擎的设计原理,并介绍一些关键的优化策略。
162 0

热门文章

最新文章

推荐镜像

更多