深入解析实时数仓Doris:三大数据模型详解

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
全局流量管理 GTM,标准版 1个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: 深入解析实时数仓Doris:三大数据模型详解

一、基本概念

在 Doris 中,数据以表(Table)的形式进行逻辑上的描述。 一张表包括行(Row)和列(Column)。Row 即用户的一行数据。Column 用于描述一行数据中不同的字段。


Column 可以分为两大类:Key 和 Value。从业务角度看,Key 和 Value 可以分别对应维度列和指标列。Doris 的 key 列是建表语句中指定的列,建表语句中的关键字’unique key’或’aggregate key’或’duplicate key’后面的列就是 Key 列,除了 Key 列剩下的就是 Value 列。


Doris 的数据模型主要分为 3 类:


Aggregate

Unique

Duplicate


下面我们分别介绍。

二、Aggregate 模型

我们以实际的例子来说明什么是聚合模型,以及如何正确的使用聚合模型。

导入数据聚合

假设业务有如下数据表模式:

ColumnName  Type  AggregationType Comment
user_id    LARGEINT   用户 id
date      DATE    数据灌入日期
city     VARCHAR(20)    用户所在城市
age        SMALLINT   用户年龄
sex         TINYINT   用户性别
last_visit_date DATETIME  REPLACE 用户最后一次访问时间
cost           BIGINT SUM 用户总消费
max_dwell_time  INT MAX   用户最大停留时间
min_dwell_time  INT MIN     用户最小停留时间

如果转换成建表语句则如下(省略建表语句中的 Partition 和 Distribution 信息)

CREATE DATABASE IF NOT EXISTS example_db;

CREATE TABLE IF NOT EXISTS example_db.example_tbl_agg1
(
    `user_id` LARGEINT NOT NULL COMMENT "用户id",
    `date` DATE NOT NULL COMMENT "数据灌入日期时间",
    `city` VARCHAR(20) COMMENT "用户所在城市",
    `age` SMALLINT COMMENT "用户年龄",
    `sex` TINYINT COMMENT "用户性别",
    `last_visit_date` DATETIME REPLACE DEFAULT "1970-01-01 00:00:00" COMMENT "用户最后一次访问时间",
    `cost` BIGINT SUM DEFAULT "0" COMMENT "用户总消费",
    `max_dwell_time` INT MAX DEFAULT "0" COMMENT "用户最大停留时间",
    `min_dwell_time` INT MIN DEFAULT "99999" COMMENT "用户最小停留时间"
)
AGGREGATE KEY(`user_id`, `date`, `city`, `age`, `sex`)
DISTRIBUTED BY HASH(`user_id`) BUCKETS 1
PROPERTIES (
"replication_allocation" = "tag.location.default: 1"
);

可以看到,这是一个典型的用户信息和访问行为的事实表。 在一般星型模型中,用户信息和访问行为一般分别存放在维度表和事实表中。这里我们为了更加方便的解释 Doris 的数据模型,将两部分信息统一存放在一张表中。


表中的列按照是否设置了 AggregationType,分为 Key (维度列) 和 Value(指标列)。没有设置 AggregationType 的,如 user_id、date、age … 等称为 Key,而设置了 AggregationType 的称为 Value。

当我们导入数据时,对于 Key 列相同的行会聚合成一行,而 Value 列会按照设置的 AggregationType 进行聚合。 AggregationType 目前有以下几种聚合方式和 agg_state:

SUM:求和,多行的 Value 进行累加。
REPLACE:替代,下一批数据中的 Value 会替换之前导入过的行中的 Value。
MAX:保留最大值。
MIN:保留最小值。
REPLACE_IF_NOT_NULL:非空值替换。和 REPLACE 的区别在于对于 null 值,不做替换。
HLL_UNION:HLL 类型的列的聚合方式,通过 HyperLogLog 算法聚合。
BITMAP_UNION:BIMTAP 类型的列的聚合方式,进行位图的并集聚合。

如果这几种聚合方式无法满足需求,则可以选择使用 agg_state 类型。

假设我们有以下导入数据(原始数据):

user_id date  city  age sex last_visit_date cost  max_dwell_time  min_dwell_time
10000 2017-10-01  北京  20  0 2017-10-01 06:00:00 20  10  10
10000 2017-10-01  北京  20  0 2017-10-01 07:00:00 15  2 2
10001 2017-10-01  北京  30  1 2017-10-01 17:05:45 2 22  22
10002 2017-10-02  上海  20  1 2017-10-02 12:59:12 200 5 5
10003 2017-10-02  广州  32  0 2017-10-02 11:20:00 30  11  11
10004 2017-10-01  深圳  35  0 2017-10-01 10:00:15 100 3 3
10004 2017-10-03  深圳  35  0 2017-10-03 10:20:22 11  6 6

通过 sql 导入数据:

insert into example_db.example_tbl_agg1 values
(10000,"2017-10-01","北京",20,0,"2017-10-01 06:00:00",20,10,10),
(10000,"2017-10-01","北京",20,0,"2017-10-01 07:00:00",15,2,2),
(10001,"2017-10-01","北京",30,1,"2017-10-01 17:05:45",2,22,22),
(10002,"2017-10-02","上海",20,1,"2017-10-02 12:59:12",200,5,5),
(10003,"2017-10-02","广州",32,0,"2017-10-02 11:20:00",30,11,11),
(10004,"2017-10-01","深圳",35,0,"2017-10-01 10:00:15",100,3,3),
(10004,"2017-10-03","深圳",35,0,"2017-10-03 10:20:22",11,6,6);

我们假设这是一张记录用户访问某商品页面行为的表。我们以第一行数据为例,解释如下:

数据  说明
10000 用户 id,每个用户唯一识别 id
2017-10-01  数据入库时间,精确到日期
北京  用户所在城市
20  用户年龄
0 性别男(1 代表女性)
2017-10-01 06:00:00 用户本次访问该页面的时间,精确到秒
20  用户本次访问产生的消费
10  用户本次访问,驻留该页面的时间
10  用户本次访问,驻留该页面的时间(冗余)

那么当这批数据正确导入到 Doris 中后,Doris 中最终存储如下:

user_id date  city  age sex last_visit_date cost  max_dwell_time  min_dwell_time
10000 2017-10-01  北京  20  0 2017-10-01 07:00:00 35  10  2
10001 2017-10-01  北京  30  1 2017-10-01 17:05:45 2 22  22
10002 2017-10-02  上海  20  1 2017-10-02 12:59:12 200 5 5
10003 2017-10-02  广州  32  0 2017-10-02 11:20:00 30  11  11
10004 2017-10-01  深圳  35  0 2017-10-01 10:00:15 100 3 3
10004 2017-10-03  深圳  35  0 2017-10-03 10:20:22 11  6 6

可以看到,用户 10000 只剩下了一行聚合后的数据。而其余用户的数据和原始数据保持一致。这里先解释下用户 10000 聚合后的数据:


前 5 列没有变化,从第 6 列 last_visit_date 开始:


2017-10-01 07:00:00:因为 last_visit_date 列的聚合方式为 REPLACE,所以 2017-10-01 07:00:00 替换了 2017-10-01 06:00:00 保存了下来。


注:在同一个导入批次中的数据,对于 REPLACE 这种聚合方式,替换顺序不做保证。如在这个例子中,最终保存下来的,也有可能是 2017-10-01 06:00:00。而对于不同导入批次中的数据,可以保证,后一批次的数据会替换前一批次。

35:因为 cost 列的聚合类型为 SUM,所以由 20 + 15 累加获得 35。


10:因为 max_dwell_time 列的聚合类型为 MAX,所以 10 和 2 取最大值,获得 10。


2:因为 min_dwell_time 列的聚合类型为 MIN,所以 10 和 2 取最小值,获得 2。


经过聚合,Doris 中最终只会存储聚合后的数据。换句话说即明细数据会丢失,用户不能够再查询到聚合前的明细数据了。

三、 Unique 模型

当用户有数据更新需求时,可以选择使用 Unique 数据模型。Unique 模型能够保证 Key 的唯一性,当用户更新一条数据时,新写入的数据会覆盖具有相同 key 的旧数据。

两种实现方式

Unique 模型提供了两种实现方式:

读时合并 (merge-on-read)

在读时合并实现中,用户在进行数据写入时不会触发任何数据去重相关的操作,所有数据去重的操作都在查询或者 compaction 时进行。因此,读时合并的写入性能较好,查询性能较差,同时内存消耗也较高。

写时合并 (merge-on-write)

在 1.2 版本中,我们引入了写时合并实现,该实现会在数据写入阶段完成所有数据去重的工作,因此能够提供非常好的查询性能。

自 2.0 版本起,写时合并已经非常成熟稳定,由于其优秀的查询性能,我们推荐大部分用户选择该实现。自 2.1 版本其,写时合并成为 Unique 模型的默认实现 关于两种实现方式的详细区别,用户可以本章节后续内容的介绍。关于两种实现方式的性能差异,参考后续章节聚合模型的局限性的描述。

数据更新的语意

Unique 模型默认的更新语意为整行UPSERT,即 UPDATE OR INSERT,该行数据的 key 如果存在,则进行更新,如果不存在,则进行新数据插入。在整行UPSERT语意下,即使用户使用 insert into 指定部分列进行写入,Doris 也会在 Planner 中将未提供的列使用 NULL 值或者默认值进行填充

部分列更新。如果用户希望更新部分字段,需要使用写时合并实现,并通过特定的参数来开启部分列更新的支持。

读时合并(与聚合模型相同的实现方式)

ColumnName  Type  IsKey Comment
user_id BIGINT  Yes 用户 id
username  VARCHAR(50) Yes 用户昵称
city  VARCHAR(20) No  用户所在城市
age SMALLINT  No  用户年龄
sex TINYINT No  用户性别
phone LARGEINT  No  用户电话
address VARCHAR(500)  No  用户住址
register_time DATETIME  No  用户注册时间

这是一个典型的用户基础信息表。这类数据没有聚合需求,只需保证主键唯一性。(这里的主键为 user_id + username)。那么我们的建表语句如下:

CREATE TABLE IF NOT EXISTS example_db.example_tbl_unique
(
    `user_id` LARGEINT NOT NULL COMMENT "用户id",
    `username` VARCHAR(50) NOT NULL COMMENT "用户昵称",
    `city` VARCHAR(20) COMMENT "用户所在城市",
    `age` SMALLINT COMMENT "用户年龄",
    `sex` TINYINT COMMENT "用户性别",
    `phone` LARGEINT COMMENT "用户电话",
    `address` VARCHAR(500) COMMENT "用户地址",
    `register_time` DATETIME COMMENT "用户注册时间"
)
UNIQUE KEY(`user_id`, `username`)
DISTRIBUTED BY HASH(`user_id`) BUCKETS 1
PROPERTIES (
"replication_allocation" = "tag.location.default: 1"
);

而这个表结构,完全同等于以下使用聚合模型描述的表结构:

ColumnName  Type  AggregationType Comment
user_id BIGINT    用户 id
username  VARCHAR(50)   用户昵称
city  VARCHAR(20) REPLACE 用户所在城市
age SMALLINT  REPLACE 用户年龄
sex TINYINT REPLACE 用户性别
phone LARGEINT  REPLACE 用户电话
address VARCHAR(500)  REPLACE 用户住址
register_time DATETIME  REPLACE 用户注册时间

及建表语句:

CREATE TABLE IF NOT EXISTS example_db.example_tbl_agg3
(
    `user_id` LARGEINT NOT NULL COMMENT "用户id",
    `username` VARCHAR(50) NOT NULL COMMENT "用户昵称",
    `city` VARCHAR(20) REPLACE COMMENT "用户所在城市",
    `age` SMALLINT REPLACE COMMENT "用户年龄",
    `sex` TINYINT REPLACE COMMENT "用户性别",
    `phone` LARGEINT REPLACE COMMENT "用户电话",
    `address` VARCHAR(500) REPLACE COMMENT "用户地址",
    `register_time` DATETIME REPLACE COMMENT "用户注册时间"
)
AGGREGATE KEY(`user_id`, `username`)
DISTRIBUTED BY HASH(`user_id`) BUCKETS 1
PROPERTIES (
"replication_allocation" = "tag.location.default: 1"
);

即 Unique 模型的读时合并实现完全可以用聚合模型中的 REPLACE 方式替代。其内部的实现方式和数据存储方式也完全一样。这里不再继续举例说明。

写时合并

Unique 模型的写时合并实现,查询性能更接近于 duplicate 模型,在有主键约束需求的场景上相比聚合模型有较大的查询性能优势,尤其是在聚合查询以及需要用索引过滤大量数据的查询中。

仍然以上面的表为例,建表语句为

CREATE TABLE IF NOT EXISTS example_db.example_tbl_unique_merge_on_write
(
    `user_id` LARGEINT NOT NULL COMMENT "用户id",
    `username` VARCHAR(50) NOT NULL COMMENT "用户昵称",
    `city` VARCHAR(20) COMMENT "用户所在城市",
    `age` SMALLINT COMMENT "用户年龄",
    `sex` TINYINT COMMENT "用户性别",
    `phone` LARGEINT COMMENT "用户电话",
    `address` VARCHAR(500) COMMENT "用户地址",
    `register_time` DATETIME COMMENT "用户注册时间"
)
UNIQUE KEY(`user_id`, `username`)
DISTRIBUTED BY HASH(`user_id`) BUCKETS 1
PROPERTIES (
"replication_allocation" = "tag.location.default: 1",
"enable_unique_key_merge_on_write" = "true"
);

使用这种建表语句建出来的表结构,与聚合模型就完全不同了:

ColumnName  Type  AggregationType Comment
user_id BIGINT    用户 id
username  VARCHAR(50)   用户昵称
city  VARCHAR(20) NONE  用户所在城市
age SMALLINT  NONE  用户年龄
sex TINYINT NONE  用户性别
phone LARGEINT  NONE  用户电话
address VARCHAR(500)  NONE  用户住址
register_time DATETIME  NONE  用户注册时间

在开启了写时合并选项的 Unique 表上,数据在导入阶段就会去将被覆盖和被更新的数据进行标记删除,同时将新的数据写入新的文件。在查询的时候, 所有被标记删除的数据都会在文件级别被过滤掉,读取出来的数据就都是最新的数据,消除掉了读时合并中的数据聚合过程,并且能够在很多情况下支持多种谓词的下推。因此在许多场景都能带来比较大的性能提升,尤其是在有聚合查询的情况下。

【注意】

Unique 表的实现方式只能在建表时确定,无法通过 schema change 进行修改。

旧的 Merge-on-read 的实现无法无缝升级到 Merge-on-write 的实现(数据组织方式完全不同),如果需要改为使用写时合并的实现版本,需要手动执行insert into unique-mow-table select * from source table.

四、 Duplicate 模型

在某些多维分析场景下,数据既没有主键,也没有聚合需求。因此,我们引入 Duplicate 数据模型来满足这类需求。举例说明。

ColumnName  Type  SortKey Comment
timestamp DATETIME  Yes 日志时间
type  INT Yes 日志类型
error_code  INT Yes 错误码
error_msg VARCHAR(1024) No  错误详细信息
op_id BIGINT  No  负责人 id
op_time DATETIME  No  处理时间

建表语句如下:

CREATE TABLE IF NOT EXISTS example_db.example_tbl_duplicate
(
    `timestamp` DATETIME NOT NULL COMMENT "日志时间",
    `type` INT NOT NULL COMMENT "日志类型",
    `error_code` INT COMMENT "错误码",
    `error_msg` VARCHAR(1024) COMMENT "错误详细信息",
    `op_id` BIGINT COMMENT "负责人id",
    `op_time` DATETIME COMMENT "处理时间"
)
DUPLICATE KEY(`timestamp`, `type`, `error_code`)
DISTRIBUTED BY HASH(`type`) BUCKETS 1
PROPERTIES (
"replication_allocation" = "tag.location.default: 1"
);


这种数据模型适用于既没有聚合需求,又没有主键唯一性约束的原始数据的存储。更多使用场景,可参阅聚合模型的局限性小节。

无排序列 Duplicate 模型

当创建表的时候没有指定 Unique、Aggregate 或 Duplicate 时,会默认创建一个 Duplicate 模型的表,并自动指定排序列。

当用户并没有排序需求的时候,可以通过在表属性中配置:

"enable_duplicate_without_keys_by_default" = "true"

然后再创建默认模型的时候,就会不再指定排序列,也不会给该表创建前缀索引,以此减少在导入和存储上额外的开销。

建表语句如下:

CREATE TABLE IF NOT EXISTS example_db.example_tbl_duplicate_without_keys_by_default
(
    `timestamp` DATETIME NOT NULL COMMENT "日志时间",
    `type` INT NOT NULL COMMENT "日志类型",
    `error_code` INT COMMENT "错误码",
    `error_msg` VARCHAR(1024) COMMENT "错误详细信息",
    `op_id` BIGINT COMMENT "负责人id",
    `op_time` DATETIME COMMENT "处理时间"
)
DISTRIBUTED BY HASH(`type`) BUCKETS 1
PROPERTIES (
"replication_allocation" = "tag.location.default: 1",
"enable_duplicate_without_keys_by_default" = "true"
);
MySQL > desc example_tbl_duplicate_without_keys_by_default;
+------------+---------------+------+-------+---------+-------+
| Field      | Type          | Null | Key   | Default | Extra |
+------------+---------------+------+-------+---------+-------+
| timestamp  | DATETIME      | No   | false | NULL    | NONE  |
| type       | INT           | No   | false | NULL    | NONE  |
| error_code | INT           | Yes  | false | NULL    | NONE  |
| error_msg  | VARCHAR(1024) | Yes  | false | NULL    | NONE  |
| op_id      | BIGINT        | Yes  | false | NULL    | NONE  |
| op_time    | DATETIME      | Yes  | false | NULL    | NONE  |
+------------+---------------+------+-------+---------+-------+
6 rows in set (0.01 sec)

五、数据模型的选择建议

因为数据模型在建表时就已经确定,且无法修改。所以,选择一个合适的数据模型非常重要。

Aggregate 模型可以通过预聚合,极大地降低聚合查询时所需扫描的数据量和查询的计算量,非常适合有固定模式的报表类查询场景。但是该模型对 count(*) 查询很不友好。同时因为固定了 Value 列上的聚合方式,在进行其他类型的聚合查询时,需要考虑语意正确性。


Unique 模型针对需要唯一主键约束的场景,可以保证主键唯一性约束。但是无法利用 ROLLUP 等预聚合带来的查询优势。对于聚合查询有较高性能需求的用户,推荐使用自 1.2 版本加入的写时合并实现。


Duplicate 适合任意维度的 Ad-hoc 查询。虽然同样无法利用预聚合的特性,但是不受聚合模型的约束,可以发挥列存模型的优势(只读取相关列,而不需要读取所有 Key 列)。

相关文章
|
4月前
|
存储 SQL 缓存
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
快手 OLAP 系统为内外多个场景提供数据服务,每天承载近 10 亿的查询请求。原有湖仓分离架构,由离线数据湖和实时数仓组成,面临存储冗余、资源抢占、治理复杂、查询调优难等问题。通过引入 Apache Doris 湖仓一体能力,替换了 Clickhouse ,升级为湖仓一体架构,并结合 Doris 的物化视图改写能力和自动物化服务,实现高性能的数据查询以及灵活的数据治理。
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
|
2月前
|
存储 SQL 缓存
AnalyticDB 实时数仓架构解析
AnalyticDB 是阿里云自研的 OLAP 数据库,广泛应用于行为分析、数据报表、金融风控等应用场景,可支持 100 trillion 行记录、10PB 量级的数据规模,亚秒级完成交互式分析查询。本文是对 《 AnalyticDB: Real-time OLAP Database System at Alibaba Cloud 》的学习总结。
72 1
|
3月前
|
存储 SQL 缓存
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
从 3.0 系列版本开始,Apache Doris 开始支持存算分离模式,用户可以在集群部署时选择采用存算一体模式或存算分离模式。基于云原生存算分离的架构,用户可以通过多计算集群实现查询负载间的物理隔离以及读写负载隔离,并借助对象存储或 HDFS 等低成本的共享存储系统来大幅降低存储成本。
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
|
5月前
|
存储 消息中间件 运维
招联金融基于 Apache Doris 数仓升级:单集群 QPS 超 10w,存储成本降低 70%
招联内部已有 40+ 个项目使用 Apache Doris ,拥有超百台集群节点,个别集群峰值 QPS 可达 10w+ 。通过应用 Doris ,招联金融在多场景中均有显著的收益,比如标签关联计算效率相较之前有 6 倍的提升,同等规模数据存储成本节省超 2/3,真正实现了降本提效。
招联金融基于 Apache Doris 数仓升级:单集群 QPS 超 10w,存储成本降低 70%
|
3月前
|
存储 缓存 数据处理
深度解析:Hologres分布式存储引擎设计原理及其优化策略
【10月更文挑战第9天】在大数据时代,数据的规模和复杂性不断增加,这对数据库系统提出了更高的要求。传统的单机数据库难以应对海量数据处理的需求,而分布式数据库通过水平扩展提供了更好的解决方案。阿里云推出的Hologres是一个实时交互式分析服务,它结合了OLAP(在线分析处理)与OLTP(在线事务处理)的优势,能够在大规模数据集上提供低延迟的数据查询能力。本文将深入探讨Hologres分布式存储引擎的设计原理,并介绍一些关键的优化策略。
162 0
|
4月前
|
存储 安全 网络安全
Hologres 的安全性和数据隐私保护
【9月更文第1天】随着数据量的不断增长和对数据价值的认识加深,数据安全和隐私保护成为了企业和组织不可忽视的重要议题。Hologres 作为一款高性能的实时数仓产品,在设计之初就将安全性置于核心地位。本文将深入探讨 Hologres 在保障数据安全和隐私方面的措施,包括数据加密、访问控制以及如何满足各类数据保护法规的要求。
78 3
|
4月前
|
消息中间件 Java 数据库连接
Hologres 数据导入与导出的最佳实践
【9月更文第1天】Hologres 是一款高性能的实时数仓服务,旨在提供快速的数据分析能力。无论是从外部数据源导入数据还是将数据导出至其他系统,都需要确保过程既高效又可靠。本文将详细介绍如何有效地导入数据到 Hologres 中,以及如何从 Hologres 导出数据。
153 1
|
5月前
|
存储 数据挖掘 大数据
深度解析Hologres计算资源配置:如何根据业务场景选择合适的计算类型?
【8月更文挑战第22天】Hologres是一款由阿里云提供的分布式分析型数据库,支持高效的大数据处理与分析。本文通过电商优化商品推荐策略的案例,介绍了Hologres中的计算组型与通用型配置。计算组型提供弹性扩展资源,适合大规模数据及高并发查询;通用型则适用于多数数据分析场景,具备良好计算性能。通过实例创建、数据加载、计算任务建立及结果查询的步骤展示,读者可理解两种配置的差异并根据业务需求灵活选择。
74 2
|
5月前
|
SQL 消息中间件 OLAP
OneSQL OLAP实践问题之实时数仓中数据的分层如何解决
OneSQL OLAP实践问题之实时数仓中数据的分层如何解决
77 1
|
5月前
|
SQL DataWorks 安全
DataWorks产品使用合集之怎么将数据导入或写入到 Hologres
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
104 0

热门文章

最新文章

推荐镜像

更多