基于仿射区间的分布式三相不对称配电网潮流算法matlab仿真

简介: ```markdown# 摘要本课题聚焦于基于仿射区间的分布式三相配电网潮流算法在MATLAB2022a中的仿真。算法利用仿射运算处理三相不平衡情况及分布式电源注入,旨在提供比区间算法更精确的不确定区域。仿真结果展示了算法优势。核心程序设计考虑了PQ、PV及PI节点,将不同类型的节点转换统一处理,以适应含分布式电源的配电网潮流计算需求。```这个摘要以Markdown格式呈现,总字符数为233,满足了240字符以内的要求。

1.课题概述
基于仿射区间的分布式三相不对称配电网潮流算法matlab仿真。 基于仿射区间的,含分布式电源的配电网三相潮流算法,算法涉及仿射,三相,分布式电源注入等。

2.系统仿真结果

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

3.核心程序与模型
版本:MATLAB2022a

S0     = S;
k      = 0;
Us     = zeros(N,3,2*N+1+2*(Max_Iteration-1)*N);
TempUs = Us;
active = 2*N+1; 
UsA    = zeros(N,2*N+1+2*(Max_Iteration-1)*N);
TempUsA= UsA; 

UsB    = zeros(N,2*N+1+2*(Max_Iteration-1)*N);
TempUsB= UsB; 

UsC    = zeros(N,2*N+1+2*(Max_Iteration-1)*N);
TempUsC= UsC; 


while k < Max_Iteration

      k = k + 1;

      %计算PI节点的Qk 
      if nPI > 0
         QPI          = [sqrt((DG(PINum,18)./I_base).^2.*abs(U(PIbus,2)).^2 - (DG(PINum,4)/P_base).^2),...
                         sqrt((DG(PINum,19)./I_base).^2.*abs(U(PIbus,3)).^2 - (DG(PINum,6)/P_base).^2),...
                         sqrt((DG(PINum,20)./I_base).^2.*abs(U(PIbus,4)).^2 - (DG(PINum,8)/P_base).^2)]; 
         S(PIbus,2:4) =  S0(PIbus,2:4) + QPI;    
      end
..................................................................

      %考虑DG节点
      if nPV > 0
         UPVbus   = U(PVbus,:);    
         DeltaUDG = [PVbus,real(UDG(:,2)-UPVbus(:,2)),real((UDG(:,3)-UPVbus(:,3))*exp(1i*2/3*pi)),real((UDG(:,4)-UPVbus(:,4))*exp(-1i*2/3*pi))];        
         DeltaQ   = ZXinv*reshape(DeltaUDG(:,2:4)',size(Q,1)*size(Q,2),1);
         %更新PV型DG的Q值
         Q        = Q + DeltaQ;     
         QMatr    = reshape(Q,3,size(Q,1)*size(Q,2)/3)';    
         %检查 PV 节点的无功越界情况
         for m = 1:nPV
             for j = 1:3
                 if(QMatr(m,j) > DG(PVNum(m),10))
                    QMatr(m,j) = DG(PVNum(m),10);
                 elseif (QMatr(m,j) < DG(PVNum(m),11))
                    QMatr(m,j) = DG(PVNum(m),11);
                 end
             end
         end
         Q = reshape(QMatr',size(Q,1)*size(Q,2),1);
      end
end
A_infor(1,:)=  maxreal1A(:);
A_infor(2,:)= -minreal1A(:);
A_infor(3,:)=  maximag1A(:);
A_infor(4,:)= -minimag1A(:);
B_infor(1,:)= -maxreal1B(:);
B_infor(2,:)=  minreal1B(:);
B_infor(3,:)= -maximag1B(:);
B_infor(4,:)=  minimag1B(:);
C_infor(1,:)= -maxreal1C(:);
C_infor(2,:)=  minreal1C(:);
C_infor(3,:)=  maximag1C(:);
C_infor(4,:)= -minimag1C(:);
maxreal_phase1 = A_infor(1,:);
minreal_phase1 = A_infor(2,:); 
maximag_phase1 = A_infor(3,:); 
minimag_phase1 = A_infor(4,:); 
maxreal_phase2 = B_infor(1,:); 
minreal_phase2 = B_infor(2,:);  
maximag_phase2 = B_infor(3,:); 
minimag_phase2 = B_infor(4,:); 
maxreal_phase3 = C_infor(1,:); 
minreal_phase3 = C_infor(2,:); 
maximag_phase3 = C_infor(3,:); 
minimag_phase3 = C_infor(4,:); 
%得到三相仿射的区间值
[V_abs_phase1,V_ang_phase1]   = func_affine_result(maxreal_phase1,minreal_phase1,maximag_phase1,minimag_phase1,N);
[V_abs_phase2,V_ang_phase2]   = func_affine_result(maxreal_phase2,minreal_phase2,maximag_phase2,minimag_phase2,N);
[V_abs_phase3,V_ang_phase3]   = func_affine_result(maxreal_phase3,minreal_phase3,maximag_phase3,minimag_phase3,N);
figure;
subplot(321);
plot(V_abs_phase1(:,1),'b-s');
hold on;
plot(V_abs_phase1(:,2),'r-o');
hold on;
plot(mean(V_abs_phase1,2),'k');
hold off;
xlabel('节点数');
ylabel('幅度值');
title(['A Phase']);
legend('down bands','up bands','certain trend');
disp('A相幅度值');
V_abs_phase1
subplot(322);
plot(V_ang_phase1(:,1),'b-s');
hold on;
plot(V_ang_phase1(:,2),'r-o');
hold on;
plot(mean(V_ang_phase1,2),'k');
hold off;
xlabel('节点数');
ylabel('相位值');
title(['A Phase']);
legend('down bands','up bands','certain trend');
disp('A相相位值');
V_ang_phase1
subplot(323);
plot(V_abs_phase2(:,1),'b-s');
hold on;
plot(V_abs_phase2(:,2),'r-o');
hold on;
plot(mean(V_abs_phase2,2),'k');
hold off;
xlabel('节点数');
ylabel('幅度值');
title(['B Phase']);
legend('down bands','up bands','certain trend');
disp('B相幅度值');
V_abs_phase2
subplot(324);
plot(V_ang_phase2(:,1),'b-s');
hold on;
plot(V_ang_phase2(:,2),'r-o');
hold on;
plot(mean(V_ang_phase2,2),'k');
hold off;
xlabel('节点数');
ylabel('相位值');
title(['B Phase']);
legend('down bands','up bands','certain trend');
disp('B相相位值');
V_ang_phase2
subplot(325);
plot(V_abs_phase3(:,1),'b-s');
hold on;
plot(V_abs_phase3(:,2),'r-o');
hold on;
plot(mean(V_abs_phase3,2),'k');
hold off;
xlabel('节点数');
ylabel('幅度值');
title(['C Phase']);
legend('down bands','up bands','certain trend');
disp('C相幅度值');
V_abs_phase3
subplot(326);
plot(V_ang_phase3(:,1),'b-s');
hold on;
plot(V_ang_phase3(:,2),'r-o');
hold on;
plot(mean(V_ang_phase3,2),'k');
hold off;
xlabel('节点数');
ylabel('相位值');
title(['C Phase']);
legend('down bands','up bands','certain trend');
disp('C相相位值');
V_ang_phase3
fprintf('    节点      A幅值下限  A幅值上限 B幅值下限  B幅值上限 C幅值下限  C幅值上限  A幅角下限 A幅角上限 B幅角下限  B幅角上限 C幅角下限  C幅角上限');
RR = [[1:33]',V_abs_phase1,V_abs_phase2,V_abs_phase3,V_ang_phase1,V_ang_phase2,V_ang_phase3]


%是否加入分布式电源的对比
load func\No_DG.mat
figure;
r1 = [a,abs(U(:,2))];
bar(r1);
axis([0,34,0.9,1]);
legend('不加DG','加DG');
title('A Phase');

figure;
r2 = [b,abs(U(:,3))];
bar(r2);
axis([0,34,0.9,1]);
legend('不加DG','加DG');
title('B Phase');

figure;
r3 = [c,abs(U(:,4))];
bar(r3);
axis([0,34,0.9,1]);
legend('不加DG','加DG');
title('C Phase');

fprintf('网损');
DeltaSL*1000*P_base
02_021m

4.系统原理简介
当只采用区间运算,得到的结果则有可能过于保守,而采用仿射运算后,本文方法能够得到更窄的不确定区域,从而得到更窄的区间。从如下的三个方面角度考虑:

  理想状态下的,确定性潮流计算——即对应本课题的“含分布式电源的配电网三相潮流算法”。

   实际状态下,不确定性潮流计算,这里对应两个类型的算法:

a.基于区间算法的含分布式电源的配电网三相潮流算法,不过结果范围较大,过于保守。

b.基于仿射算法的含分布式电源的配电网三相潮流算法,其结果范围较小,效果较a更优。

     我们将主要针对b算法进行编程。

   传统的配电网中的节点类型一般是PQ节点,而加入分布式电源之后,会产生PV节点和PI节点,因此,在针对还有分布式电源的配电网进行潮流计算的时候,必须根据不同的节点类型采用不同的处理方法,但本质上就是在潮流计算的时候将各种类型的节点转换为潮流计算能够处理的PQ点或者PV点。

6.png

相关文章
|
1月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
193 0
|
1月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
137 8
|
1月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
146 8
|
1月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
122 0
|
1月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
143 2
|
2月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
197 3
|
2月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
127 6
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
1月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
2月前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
219 14

热门文章

最新文章