详尽分享用Python进行时间序列预测的7种方法

简介: 详尽分享用Python进行时间序列预测的7种方法

数据准备

数据集(JetRail高铁的乘客数量)下载.

假设要解决一个时序问题:根据过往两年的数据(2012 年 8 月至 2014 年 8月),需要用这些数据预测接下来 7 个月的乘客数量。

import //代码效果参考:http://www.zidongmutanji.com/bxxx/173258.html

pandas as pd

import numpy as np

import matplotlib.pyplot as plt

df = pd.read_csv('train.csv')

df.head()

df.shape

依照上面的代码,我们获得了 2012-2014 年两年每个小时的乘客数量。为了解释每种方法的不同之处,以每天为单位构造和聚合了一个数据集。

从 2012 年 8 月- 2013 年 12 月的数据中构造一个数据集。

创建 train and test 文件用于建模。前 14 个月( 2012 年 8 月- 2013 年 10 月)用作训练数据,后两个月(2013 年 11 月 – 2013 年 12 月)用作测试数据。

以每天为单位聚合数据集。

import pandas as pd

import matplotlib.pyplot as plt

# Subsetting the dataset

# Index 11856 marks the end of year 2013

df = pd.read_csv('train.csv', nrows=11856)

# Creating train and test set

# Index 10392 marks the end of October 2013

train = df【0:10392】

test = df【10392:】

# Aggregating the dataset at daily level

df【'Timestamp'】 = pd.to_datetime(df【'Datetime'】, format='%d-%m-%Y %H:%M') # 4位年用Y,2位年用y

df.index = df【'Timestamp'】

df = df.resample('D').mean() #按天采样,计算均值

train【'Timestamp'】 = pd.to_datetime(train【'Datetime'】, format='%d-%m-%Y %H:%M')

train.index = train【'Timestamp'】

train = train.resample('D').mean() #

test【'Timestamp'】 = pd.to_datetime(test【'Datetime'】, format='%d-%m-%Y %H:%M')

test.index = test【'Timestamp'】

test = test.resample('D').mean()

#Plotting data

train.Count.plot(figsize=(15,8), title= 'Daily Ridership', fontsize=14)

test.Count.plot(figsize=(15,8), title= 'Daily Ridership', fontsize=14)

plt.show()

我们将数据可视化(训练数据和测试数据一起),从而得知在一段时间内数据是如何变化的。

方法1:朴素法

假设 y 轴表示物品的价格,x 轴表示时间(天)

如果数据集在一段时间内都很稳定,我们想预测第二天的价格,可以取前面一天的价格,预测第二天的值。这种假设第一个预测点和上一个观察点相等的预测方法就叫朴素法。即 ^yt+1=ytyt+1^=yt\hat{y_{t+1}} = y_t

dd = np.asarray(train【'Count'】)

y_hat = test.copy()

y_hat【'naive'】 = dd【len(dd) - 1】

plt.figure(figsize=(12, 8))

plt.plot(train.index, train【'Count'】, label='Train')

plt.plot(test.index, test【'Count'】, label='Test')

plt.plot(y_hat.index, y_hat【'naive'】, label='Naive Forecast')

plt.legend(loc='best')

plt.title("Naive Forecast")

plt.show()

朴素法并不适合变化很大的数据集,最适合稳定性很高的数据集。我们计算下均方根误差,检查模型在测试数据集上的准确率:

from sklearn.metrics import mean_squared_error

from math import sqrt

rms = sqrt(mean_squared_error(test【'Count'】, y_hat【'naive'】))

print(rms)

最终均方误差RMS为:43.91640614391676

方法2:简单平均法

物品价格会随机上涨和下跌,平均价格会保持一致。我们经常会遇到一些数据集,虽然在一定时期内出现小幅变动,但每个时间段的平均值确实保持不变。这种情况下,我们可以预测出第二天的价格大致和过去天数的价格平均值一致。这种将预期值等同于之前所有观测点的平均值的预测方法就叫简单平均法。即^yx+1=1xx∑i=1yiy^x+1=1x∑i=1xyi\displaystyle \hat{y}{x+1} = \frac{1}{x} \sum{i=1}^xy_i

y_hat_avg = test.copy()

y_hat_avg【'avg_forecast'】 = train【'Count'】.mean()

plt.figure(figsize=(12,8))

plt.plot(train【'Count'】, label='Train')

plt.plot(test【'Count'】, label='Test')

plt.plot(y_hat_avg【'avg_forecast'】, label='Average Forecast')

plt.legend(loc='best')

plt.show()

方法3:移动平均法

物品价格在一段时间内大幅上涨,但后来又趋于平稳。我们也经常会遇到这种数据集,比如价格或销售额某段时间大幅上升或下降。如果我们这时用之前的简单平均法,就得使用所有先前数据的平均值,但在这里使用之前的所有数据是说不通的,因为用开始阶段的价格值会大幅影响接下来日期的预测值。因此,我们只取最近几个时期的价格平均值。很明显这里的逻辑是只有最近的值最要紧。这种用某些窗口期计算平均值的预测方法就叫移动平均法。

计算移动平均值涉及到一个有时被称为“滑动窗口”的大小值p。使用简单的移动平均模型,我们可以根据之前数值的固定有限数p的平均值预测某个时序中的下一个值。这样,对于所有的 i p:

^yl=1p(yi?1+<span id="MJXc-

目录
打赏
0
0
0
0
95
分享
相关文章
解决Python requests库POST请求参数顺序问题的方法。
总之,想要在Python的requests库里保持POST参数顺序,你要像捋顺头发一样捋顺它们,在向服务器炫耀你那有条不紊的数据前。抓紧手中的 `OrderedDict`与 `json`这两把钥匙,就能向服务端展示你的请求参数就像经过高端配置的快递包裹,里面的商品摆放井井有条,任何时候开箱都是一种享受。
57 10
Python实现时间序列动量策略:波动率标准化让量化交易收益更平稳
时间序列动量策略(TSMOM)是一种基于资产价格趋势的量化交易方法,通过建立多头或空头头寸捕捉市场惯性。然而,传统TSMOM策略因风险敞口不稳定而面临收益波动问题。波动率调整技术通过动态调节头寸规模,维持恒定风险水平,优化了策略表现。本文系统分析了波动率调整TSMOM的原理、实施步骤及优势,强调其在现代量化投资中的重要地位,并探讨关键参数设定与实际应用考量,为投资者提供更平稳的风险管理体验。
93 4
Python实现时间序列动量策略:波动率标准化让量化交易收益更平稳
python__init__方法笔记
本文总结了Python中`__init__`方法的使用要点,包括子类对父类构造方法的调用规则。当子类未重写`__init__`时,实例化会自动调用父类的构造方法;若重写,则需通过`super()`或直接调用父类名称来显式继承父类初始化逻辑。文中通过具体代码示例展示了不同场景下的行为及输出结果,帮助理解类属性与成员变量的关系,以及如何正确使用`super()`实现构造方法的继承。
103 9
|
2月前
|
Python 中__new__方法详解及使用
__new__ 是 Python 中用于创建类实例的静态方法,在实例化对象时优先于 __init__ 执行。它定义在基础类 object 中,需传递 cls 参数(表示当前类)。__new__ 可决定是否使用 __init__ 方法或返回其他对象作为实例。特性包括:1) 在实例化前调用;2) 始终为静态方法。示例中展示了其用法及 Python2 和 Python3 的差异,强调了参数处理的不同。
111 10
|
2月前
|
Python技术解析:了解数字类型及数据类型转换的方法。
在Python的世界里,数字并不只是简单的数学符号,他们更多的是一种生动有趣的语言,用来表达我们的思维和创意。希望你从这个小小的讲解中学到了有趣的内容,用Python的魔法揭示数字的奥秘。
82 26
[oeasy]python093_find方法_指数为负数_index_实际效果
本文介绍了Python中`find`方法与索引(index)的使用,包括负数索引的实际效果。回顾了`eval`函数的应用,并强调类名如`str`、`int`、`list`不可用作变量名以避免覆盖。通过示例解析了负数索引在字符串和列表中的作用,以及`index`方法的三个参数(value、start、stop)的用法。同时对比了`index`和`find`方法的区别:`index`找不到子串时抛出`ValueError`,而`find`返回-1。最后总结了正负索引的使用场景及两者的特性,提供了相关学习资源链接。
311 8
|
2月前
|
在VScode环境下配置Python环境的方法
经过上述步骤,你的VSCode环境就已经配置好了。请尽情享受这扇你为自己开启的知识之窗。如同你在冒险世界中前行,你的探索之路只有越走越广,你获得的知识只会越来越丰富,你的能力只会越来越强。
209 37
|
2月前
|
Python 中__new__方法详解及使用
`__new__` 是 Python 中的一个特殊方法,用于控制对象的创建过程,在 `__init__` 之前执行。它是类的静态方法,负责返回一个实例。如果 `__new__` 不返回对象,`__init__` 将不会被调用。本文详细介绍了 `__new__` 的作用、特性及与 `__init__` 的区别,并通过实例演示了其在单例模式中的应用,同时对比了 Python2 和 Python3 中的写法差异。
Python推导式进阶指南:优雅初始化序列的科学与艺术
本文系统讲解Python推导式的用法与技巧,涵盖列表、字典、集合推导式及生成器表达式。通过代码示例和性能对比,展示推导式在数据结构初始化中的优势:简洁高效、执行速度快30%-50%。文章分析基础语法、核心应用场景(如序列构造、键值对转换、去重运算)及嵌套使用,并探讨使用边界与最佳实践,强调可读性优先原则。最后指出,合理运用推导式能显著提升代码质量和处理效率,同时避免过度复杂化的陷阱。
52 0
Python数值方法在工程和科学问题解决中的应用
本文探讨了Python数值方法在工程和科学领域的广泛应用。首先介绍了数值计算的基本概念及Python的优势,如易学易用、丰富的库支持和跨平台性。接着分析了Python在有限元分析、信号处理、优化问题求解和控制系统设计等工程问题中的应用,以及在数据分析、机器学习、模拟建模和深度学习等科学问题中的实践。通过具体案例,展示了Python解决实际问题的能力,最后总结展望了Python在未来工程和科学研究中的发展潜力。

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问