必知的技术知识:FM与FFM深入解析

简介: 必知的技术知识:FM与FFM深入解析

因子机的定义


机器学习中的建模问题可以归纳为从数据中学习一个函数,它将实值的特征向量映射到一个特定的集合中。例如,对于回归问题,集合 T 就是实数集 R,对于二分类问题,这个集合可以是{+1,-1}。对于监督学习,通常有一标注的训练样本集合


线性函数是最简单的建模函数,它假定这个函数可以用参数w来刻画,


对于回归问题,,而对于二分类问题,需要做对数几率函数变换(逻辑回归)


线性模型的缺点是无法学到模型之间的交互,而这在推荐和CTR预估中是比较关键的。例如,CTR预估中常将用户id和广告id onehot 编码后作为特征向量的一部分。


为了学习特征间的交叉,SVM通过多项式核函数来实现特征的交叉,实际上和多项式模型是一样的,这里以二阶多项式模型为例


多项式模型的问题在于二阶项的参数过多,设特征维数为n,那么二阶项的参数数目为n(//代码效果参考:http://www.lyjsj.net.cn/wx/art_24151.html

n-1)/2,对于广告点击率预估问题,由于存在大量id特征,导致n可能为107维,这样一来,模型参数的 量级为1014,这比样本量4x107多得多!这导致只有极少数的二阶组合模式才能在样本中找到, 而绝大多数模式在样本中找不到,因而模型无法学出对应的权重。例如,对于某个wij样本中找不到xi=1,xj=1(这里假定所有的特征都是离散的特征,只取0和1两个值)这种样本,那么wij的梯度恒为0,从而导致参数学习失败!

很容易想到,可以对二阶项参数施加某种限制,减少模型参数的自由度。FM 施加的限制是要求二阶项系数矩阵是低秩的,能够分解为低秩矩阵的乘积


这样一来,就将参数个数减少到kn,可以设置较少的k值(一般设置在100以内,k[n),极大地减少模型参数,增强模型泛化能力,这跟矩阵分解的方法是一样的。向量vi可以解释为第i个特征对应的隐因子或隐向量。 以user和item的推荐问题为例,如果该特征是user,可以解释为用户向量,如果是item,可以解释为物品向量。


计算复杂度


因为引入和二阶项,如果直接计算,时间复杂度将是O(n2),n是特征非零特征数目, 可以通过简单的数学技巧将时间复杂度减少到线性时间复杂度。


基于一个基本的观察,齐二次交叉项之和可以表达为平方和之差


上式左边计算复杂度为O(n2),而右边是O(n),根据上式,可以将原表达式中二次项化简为


上式计算时间复杂度是O(n)


基于梯度的优化都需要计算目标函数对参数的梯度,对FM而言,目标函数对参数的梯度可以利用链式求导法则分解为目标函数对Φ的梯度和?Φ/?θ的乘积。前者依赖于具体任务,后者可以简单的求得


优化方案


原论文中给出了三种优化方案,它们分别是


随机梯度下降,这种方案收敛慢而且非常敏感,可以利用现代的一些trick,例如采用 AdaGrad 算法,采用自适应学习率,效果相对比较好,论文【6】对FFM就采用这种方案。


交替方向乘子(ALS),这种方案只//代码效果参考:http://www.lyjsj.net.cn/wx/art_24149.html

适用于回归问题,它每次优化一个参数,把其他参数固定,好处是每次都是//代码效果参考: http://www.lyjsj.net.cn/wx/art_24147.html

一个最小二乘问题,有解析解。

基于蒙特卡罗马尔科夫链的优化方案,论文中效果最好的方案,细节可以参考原文。


FFM


在实际预测任务中,特征往往包含多种id,如果不同id组合时采用不同的隐向量,那么这就是 FFM(Field Factorization Machine) 模型【6】。它将特征按照事先的规则分为多个场(Field),特征xi属于某个特定的场f,每个特征将被映射为多个隐向量,每个隐向量对应一个场。当两个特征xi,xj组合时,用对方对应的场对应的隐向量做内积!


fi,fj分别是特征xi,xj对应的场编号。FFM 由于引入了场,使得每两组特征交叉的隐向量都是独立的,可以取得更好的组合效果,但是使得计算复杂度无法通过优化变成线性时间复杂度,每个样本预测的时间复杂度为O(n2 k),不过FFM的k值通常远小于FM的k值。有论文对FFM在Criteo和Avazu两个任务(Kaggle上的两个CTR预估比赛)上进行了试验,结果表明 FFM 的成绩优于 FM。事实上,FM 可以看做只有一个场的 FFM。

相关文章
|
11月前
|
Web App开发 数据采集 开发者
某查”平台请求头反爬技术解析与应对
某查”平台请求头反爬技术解析与应对
|
10月前
|
传感器 人工智能 物联网
穿戴科技新风尚:智能服装设计与技术全解析
穿戴科技新风尚:智能服装设计与技术全解析
804 85
|
10月前
|
人工智能 API 语音技术
HarmonyOS Next~鸿蒙AI功能开发:Core Speech Kit与Core Vision Kit的技术解析与实践
本文深入解析鸿蒙操作系统(HarmonyOS)中的Core Speech Kit与Core Vision Kit,探讨其在AI功能开发中的核心能力与实践方法。Core Speech Kit聚焦语音交互,提供语音识别、合成等功能,支持多场景应用;Core Vision Kit专注视觉处理,涵盖人脸检测、OCR等技术。文章还分析了两者的协同应用及生态发展趋势,展望未来AI技术与鸿蒙系统结合带来的智能交互新阶段。
705 31
|
10月前
|
机器学习/深度学习 缓存 自然语言处理
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
1248 6
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
|
10月前
|
编解码 监控 网络协议
RTSP协议规范与SmartMediaKit播放器技术解析
RTSP协议是实时流媒体传输的重要规范,大牛直播SDK的rtsp播放器基于此构建,具备跨平台支持、超低延迟(100-300ms)、多实例播放、高效资源利用、音视频同步等优势。它广泛应用于安防监控、远程教学等领域,提供实时录像、快照等功能,优化网络传输与解码效率,并通过事件回调机制保障稳定性。作为高性能解决方案,它推动了实时流媒体技术的发展。
545 5
|
10月前
|
数据采集 机器学习/深度学习 存储
可穿戴设备如何重塑医疗健康:技术解析与应用实战
可穿戴设备如何重塑医疗健康:技术解析与应用实战
391 4
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术如何重塑客服系统?解析合力亿捷AI智能客服系统实践案例
本文探讨了人工智能技术在客服系统中的应用,涵盖技术架构、关键技术和优化策略。通过感知层、认知层、决策层和执行层的协同工作,结合自然语言处理、知识库构建和多模态交互技术,合力亿捷客服系统实现了智能化服务。文章还提出了用户体验优化、服务质量提升和系统性能改进的方法,并展望了未来发展方向,强调其在客户服务领域的核心价值与潜力。
616 6
|
10月前
|
编解码 人工智能 并行计算
基于 Megatron 的多模态大模型训练加速技术解析
Pai-Megatron-Patch 是一款由阿里云人工智能平台PAI 研发的围绕英伟达 Megatron 的大模型训练配套工具,旨在帮助开发者快速上手大模型,打通大模型相关的高效分布式训练、有监督指令微调、下游任务评估等大模型开发链路。本文以 Qwen2-VL 为例,从易用性和训练性能优化两个方面介绍基于 Megatron 构建的 Pai-Megatron-Patch 多模态大模型训练的关键技术
|
10月前
|
监控 负载均衡 安全
静态IP代理与动态IP代理:提升速度与保障隐私的技术解析
本文探讨了静态IP代理和动态IP代理的特性和应用场景。静态IP代理通过高质量服务提供商、网络设置优化、定期更换IP与负载均衡及性能监控提升网络访问速度;动态IP代理则通过隐藏真实IP、增强安全性、绕过封锁和提供独立IP保障用户隐私。结合实际案例与代码示例,展示了两者在不同场景下的优势,帮助用户根据需求选择合适的代理服务以实现高效、安全的网络访问。
361 1
|
10月前
|
机器学习/深度学习 数据采集 自然语言处理
基于Python的情感分析与情绪识别技术深度解析
本文探讨了基于Python的情感分析与情绪识别技术,涵盖基础概念、实现方法及工业应用。文中区分了情感分析与情绪识别的核心差异,阐述了从词典法到深度学习的技术演进,并通过具体代码展示了Transformers架构在细粒度情感分析中的应用,以及多模态情绪识别框架的设计。此外,还介绍了电商评论分析系统的构建与优化策略,包括领域自适应训练和集成学习等方法。未来,随着深度学习和多模态数据的发展,该技术将更加智能与精准。
640 1

推荐镜像

更多
  • DNS