东芝开发高速对照大数据技术 比传统处理技术快50倍

简介:

东芝开发出了可高速对照大数据、大规模媒体数据注1的数据处理技术。此技术以高维矢量注2表现人物的面部、销售数据等,通过预先将类似的矢量群索引化处理,可实现高速对照。利用此技术从1000万张人物的面部图像数据中提取指定人物的实验注3中,仅8.31毫秒(1毫秒=1/1000秒)即可完成处理。比传统的处理速度高出约50倍注4。

近年来,大数据的分析、活用技术不断用于机械学习或机器故障预测等领域,大幅提高了故障的预测精度,给人们的生活带来诸多便利的同时,分析的数据量也比人们预想的更快实现了大容量化、大规模化,寻求计算处理的高速化需求日益凸显。

东芝开发的高速对照技术,结合了“矢量符号技术”(以尽量维持矢量间的距离的状态进行压缩)、“矢量索引技术”(不计算矢量间的距离而是预先索引化处理距离比较近的矢量群)、“管道搜索技术”(将粗略搜索和详细搜索进行阶段性组合)这3项技术,从而实现了计算处理的高性能化、高速化。其中,“矢量索引技术”是东芝最先开发的技术,摆脱了逐一对照咨询数据的矢量,而是对照已经过索引化处理的类似的矢量群,使得处理速度大幅提高。

东芝以模式挖掘注5、媒体识别的强化注6、大数据分析注7三个领域为中心,将此技术向解决方案服务领域推广应用。例如,可通过在大范围内设置的监控摄像头的影像瞬时发现指定人物,可使用机场等的水域监控高速对照国际通缉犯的人脸照片列表注8。

今后,东芝还将把此技术应用于深度学习,扩大与提高人工智能等相关的应用领域,为企业创造全新的价值。

此外,东芝已将此技术与向外扩展型数据库“GridDB?”组合,建立了可高速处理大数据、大规模媒体数据的世界首个适用高维矢量对照的数据库,计划将于2016年制作成产品。

注1:例如,监控影像、广播节目档案、客户服务中心储存的语音记录、Web文本等大规模媒体数据。

注2:并非二维(平面)或三维(空间)的矢量,而是拥有数百~数万等维数的矢量。

注3:使用拍摄的5800人的面部共1000万张图像,以98%或以上的面部识别精度为限制条件进行实施。

注4:依据东芝独立调查获得的速度比较值。

注5:模式挖掘(类似模式搜索)

可对照监控摄像头等的影像的広域监控(追踪需要监控的对象人员等)

配置场所可以是车站、机场、高速道路等的闸口(验票)、主题公园、娱乐场等的各监控点、从车站到运动场(音乐会、体育)的移动路线监控、ATM、接待窗口、售票机等。

注6:媒体识别的强化

国际通缉犯的检查(在机场等场所的监控强化等)

注7:大数据分析

对学习和预测自动进行数据分析云服务。只将销售数据、机械信号数据等需要分析的数据上传至服务器,无需另行配置分析管理等人员,可自动获得分析结果。

注8:将1千万人的国际通缉犯的人脸照片列表和通过安全门的人物进行对照,使用其它公司的类似技术需要约20秒,使用本技术则仅需约0.68秒便可进行对照(依据东芝与系统整体处理时间相关的理论估计值)。

※GridDB是株式会社东芝的注册商标。
本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
2月前
|
存储 人工智能 大数据
云栖2025|阿里云开源大数据发布新一代“湖流一体”数智平台及全栈技术升级
阿里云在云栖大会发布“湖流一体”数智平台,推出DLF-3.0全模态湖仓、实时计算Flink版升级及EMR系列新品,融合实时化、多模态、智能化技术,打造AI时代高效开放的数据底座,赋能企业数字化转型。
715 0
|
4月前
|
数据采集 人工智能 分布式计算
ODPS在AI时代的发展战略与技术演进分析报告
ODPS(现MaxCompute)历经十五年发展,从分布式计算平台演进为AI时代的数据基础设施,以超大规模处理、多模态融合与Data+AI协同为核心竞争力,支撑大模型训练与实时分析等前沿场景,助力企业实现数据驱动与智能化转型。
407 4
|
5月前
|
存储 分布式计算 Hadoop
Hadoop框架解析:大数据处理的核心技术
组件是对数据和方法的封装,从用户角度看是实现特定功能的独立黑盒子,能够有效完成任务。组件,也常被称作封装体,是对数据和方法的简洁封装形式。从用户的角度来看,它就像是一个实现了特定功能的黑盒子,具备输入和输出接口,能够独立完成某些任务。
|
2月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
4月前
|
SQL 分布式计算 大数据
我与ODPS的十年技术共生之路
ODPS十年相伴,从初识的分布式计算到共生进化,突破架构边界,推动数据价值深挖。其湖仓一体、隐私计算与Serverless能力,助力企业降本增效,赋能政务与商业场景,成为数字化转型的“数字神经系统”。
|
4月前
|
存储 人工智能 算法
Java 大视界 -- Java 大数据在智能医疗影像数据压缩与传输优化中的技术应用(227)
本文探讨 Java 大数据在智能医疗影像压缩与传输中的关键技术应用,分析其如何解决医疗影像数据存储、传输与压缩三大难题,并结合实际案例展示技术落地效果。
|
4月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据在智能物流运输车辆智能调度与路径优化中的技术实现(218)
本文深入探讨了Java大数据技术在智能物流运输中车辆调度与路径优化的应用。通过遗传算法实现车辆资源的智能调度,结合实时路况数据和强化学习算法进行动态路径优化,有效提升了物流效率与客户满意度。以京东物流和顺丰速运的实际案例为支撑,展示了Java大数据在解决行业痛点问题中的强大能力,为物流行业的智能化转型提供了切实可行的技术方案。
|
5月前
|
数据采集 自然语言处理 分布式计算
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合
|
5月前
|
存储 分布式计算 算法
Java 大视界 -- Java 大数据在智能教育在线考试监考与作弊检测中的技术创新(193)
本文探讨了Java大数据技术在智能教育在线考试监考与作弊检测中的创新应用。随着在线考试的普及,作弊问题日益突出,传统监考方式难以应对。通过Java大数据技术,可实现考生行为分析、图像识别等多维度监控,提升作弊检测的准确性与效率。结合Hadoop与Spark等技术,系统能实时处理海量数据,构建智能监考体系,保障考试公平性,推动教育评价体系的数字化转型。
|
5月前
|
SQL 缓存 监控
大数据之路:阿里巴巴大数据实践——实时技术与数据服务
实时技术通过流式架构实现数据的实时采集、处理与存储,支持高并发、低延迟的数据服务。架构涵盖数据分层、多流关联,结合Flink、Kafka等技术实现高效流计算。数据服务提供统一接口,支持SQL查询、数据推送与定时任务,保障数据实时性与可靠性。