MySQL索引专项复习

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: MySQL索引专项复习

一、索引分类与数据结构

  • 数据结构分类:B+树,Hash索引,Full-text索引
  • 物理存储分类:聚集索引、非聚集索引
  • 字段特性分类:主键索引(PRIMARY KEY)、唯一索引(UNIQUE)、普通索引(INDEX)、全文索引(FULLTEXT)
  • 字段个数分类:单列索引、联合索引(也叫复合索引、组合索引)

如果一个表没有主键索引依旧会创建B+树

在InnoDB中,会为每一张表创建一个主键索引,如果没有明确的主键索引,会使用一个隐藏(ROW ID)的、自动生成的主键来创建索引。建议每个表都添加主键索引。

HASH索引

在InnoDB中不支持mysql,即使选择了hash索引,但是使用的依旧是B+,InnoDB只支持自适应的HASH索引,手动选择无效。

memory支持hash索引,存在hash冲突,使用链表解决

聚簇索引和非聚簇索引

聚集索引将索引和数据放在一起,非聚集索引分离开存储,所以需要二次查找。

在MySQL中二级索引使用非聚集索引 ,除了主键索引都是二级索引。二级索引叶子节点存储主键id,根据id再次通过主键索引查找,这叫回表

覆盖索引

查询的字段都在索引列中叫覆盖索引。

索引下推

二级索引中的优化手段,在范围查询中减少回表次数,没有索引下推的时候,一个范围查询使用二级索引,第一次查询了一个范围的主键,假设查询到10条数据,那么需要回表十次,如果使用索引下推,那么只需要回表一次,就可以拿到十条数据。

单列索引

索引只有一个字段,即使是中文,构成的B+树也是有序的

联合索引

构成索引的是多个字段。如何保证数据有序?

假设有三个字段 name、age、id

那就按照name、age、id的先后顺序排序,最后这些字段都在B+树的叶子节点上。

最左前缀原则

当我创建n个字段的联合索引时,若想使用索引查询,查询条件必须使用第一个字段,因为联合索引是按照字段顺序排序的,没有第一个字段就是乱序。

创建A B C的联合索引,AB、AC、ABC都是可以走联合索引的,但是BC不可以

切记合理使用单列索引和联合索引,不可盲目添加索引

索引优缺点

优点:提高检索效率;减低排序成本,默认asc。

缺点:创建和维护索引需要时间;占用物理空间;降低表的增删改效率。

二、MySQL优化

Explain可以模拟优化器执行查询语句,帮助我们理解sql是如何运行的。

Explain字段含义

列名 含义
tyep 查询所用的访问类型
possible_kes 可能用到的索引
key 实际用到的索引
ref 使用索引时,与索引等值匹配的列或者常量
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
22天前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
1月前
|
存储 NoSQL 关系型数据库
为什么MySQL不使用红黑树做索引
本文详细探讨了MySQL索引机制,解释了为何添加索引能提升查询效率。索引如同数据库的“目录”,在数据量庞大时提高查询速度。文中介绍了常见索引数据结构:哈希表、有序数组和搜索树(包括二叉树、平衡二叉树、红黑树、B-树和B+树)。重点分析了B+树在MyISAM和InnoDB引擎中的应用,并讨论了聚簇索引、非聚簇索引、联合索引及最左前缀原则。最后,还介绍了LSM-Tree在高频写入场景下的优势。通过对比多种数据结构,帮助理解不同场景下的索引选择。
69 6
|
1月前
|
SQL 关系型数据库 MySQL
案例剖析:MySQL唯一索引并发插入导致死锁!
案例剖析:MySQL唯一索引并发插入导致死锁!
案例剖析:MySQL唯一索引并发插入导致死锁!
|
30天前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
60 3
Mysql(4)—数据库索引
|
13天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
69 1
|
24天前
|
存储 关系型数据库 MySQL
如何在MySQL中进行索引的创建和管理?
【10月更文挑战第16天】如何在MySQL中进行索引的创建和管理?
49 1
|
14天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
45 0
|
1月前
|
监控 关系型数据库 MySQL
MySQL数据表索引命名规范
MySQL数据表索引命名规范
56 1
|
1月前
|
存储 SQL 关系型数据库
mysql中主键索引和联合索引的原理与区别
本文详细介绍了MySQL中的主键索引和联合索引原理及其区别。主键索引按主键值排序,叶节点仅存储数据区,而索引页则存储索引和指向数据域的指针。联合索引由多个字段组成,遵循最左前缀原则,可提高查询效率。文章还探讨了索引扫描原理、索引失效情况及设计原则,并对比了InnoDB与MyISAM存储引擎中聚簇索引和非聚簇索引的特点。对于优化MySQL性能具有参考价值。
|
1月前
|
存储 关系型数据库 MySQL
MySQL中的索引及怎么使用
综上所述,MySQL索引的正确使用是数据库性能调优的关键一环。通过合理设计索引结构,结合业务需求和数据特性,可以有效提升数据库查询响应速度,降低系统资源消耗,从而确保应用的高效运行。
65 1