Python多线程学习优质方法分享

简介: Python多线程学习优质方法分享

一、Python中的线程使用:

Python中使用线程有两种方式:函数或者用类来包装线程对象。

1、 函数式:调用thread模块中的start_new_thread()函数来产生新线程。如下例:

import time
import thread
def timer(no, interval):
cnt = 0
while cnt<10:
print 'Thread:(%d) Time:%s\n'%(no, time.ctime())
time.sleep(interval)
cnt+=1
thread.exit_thread()

def test(): #Use thread.start_new_thread() to create 2 new threads
thread.start_new_thread(timer, (1,1))
thread.start_new_thread(timer, (2,2))

if name=='main':
test()

上面的例子定义了一个线程函数timer,它打印出10条时间记录后退出,每次打印的间隔由interval参数决定。thread.start_new_thread(function, args[, kwargs])的第一个参数是线程函数(本例中的timer方法),第二个参数是传递给线程函数的参数,它必须是tuple类型,kwargs是可选参数。

线程的结束可以等待线程自然结束,也可以在线程函数中调用thread.exit()或thread.exit_thread()方法。

2、 创建threading.Thread的子类来包装一个线程对象,如下例:

import threading
import time
class timer(threading.Thread): #The timer class is derived from the class threading.Thread
def init(self, num, interval):
threading.Thread.init(self)
self.thread_num = num
self.interval = interval
self.thread_stop = False

def run(self): #Overwrite run() method, put what you want the thread do here  
    while not self.thread_stop:  
        print 'Thread Object(%d), Time:%s\n' %(self.thread_num, time.ctime())  

//代码效果参考:https://v.youku.com/v_show/id_XNjQwNjg0ODk3Ng==.html

        time.sleep(self.interval)  
def stop(self):  
    self.thread_stop = True  

def test():
thread1 = timer(1, 1)
thread2 = timer(2, 2)
thread1.start()
thread2.start()
time.sleep(10)
thread1.stop()
thread2.stop()
return

if name == 'main':
test()

就我个人而言,比较喜欢第二种方式,即创建自己的线程类,必要时重写threading.Thread类的方法,线程的控制可以由自己定制。

threading.Thread类的使用:

1,在自己的线程类的init里调用threading.Thread.init(self, name = threadname)

Threadname为线程的名字

2, run(),通常需要重写,编写代码实现做需要的功能。

3,getName(),获得线程对象名称

4,setName(),设置线程对象名称

5,start(),启动线程

6,jion([timeout]),等待另一线程结束后再运行。

7,setDaemon(bool),设置子线程是否随主线程一起结束,必须在start()之前调用。默认为False。

8,isDaemon(),判断线程是否随主线程一起结束。

9,isAlive(),检查线程是否在运行中。

此外threading模块本身也提供了很多方法和其他的类,可以帮助我们更好的使用和管理线程。可以参看http://www.python.org/doc/2.5.2/lib/module-threading.html。

假设两个线程对象t1和t2都要对num=0进行增1运算,t1和t2都各对num修改10次,num的最终的结果应该为20。但是由于是多线程访问,有可能出现下面情况:在num=0时,t1取得num=0。系统此时把t1调度为”sleeping”状态,把t2转换为”running”状态,t2页获得num=0。然后t2对得到的值进行加1并赋给num,使得num=1。然后系统又把t2调度为”sleeping”,把t1转为”running”。线程t1又把它之前得到的0加1后赋值给num。这样,明明t1和t2都完成了1次加1工作,但结果仍然是num=1。

上面的case描述了多线程情况下最常见的问题之一:数据共享。当多个线程都要去修改某一个共享数据的时候,我们需要对数据访问进行同步。

1、 简单的同步

最简单的同步机制就是“锁”。锁对象由threading.RLock类创建。线程可以使用锁的acquire()方法获得锁,这样锁就进入“locked”状态。每次只有一个线程可以获得锁。如果当另一个线程试图获得这个锁的时候,就会被系统变为“blocked”状态,直到那个拥有锁的线程调用锁的release()方法来释放锁,这样锁就会进入“unlocked”状态。“blocked”状态的线程就会收到一个通知,并有权利获得锁。如果多个线程处于“blocked”状态,所有线程都会先解除“blocked”状态,然后系统选择一个线程来获得锁,其他的线程继续沉默(“blocked”)。

Python中的thread模块和Lock对象是Python提供的低级线程控制工具,使用起来非常简单。如下例所示:

import thread
import time
mylock = thread.allocate_lock() #Allocate a lock
num=0 #Shared resource

def add_num(name):
global num
while True:
mylock.acquire() #Get the lock

    # Do something to the shared resource  
    print 'Thread %s locked! num=%s'%(name,str(num))  
    if num >= 5:  

//代码效果参考:https://v.youku.com/v_show/id_XNjQwNjg0NDY4MA==.html
print 'Thread %s released! num=%s'%(name,str(num))
mylock.release()
thread.exit_thread()
num+=1
print 'Thread %s released! num=%s'%(name,str(num))
mylock.release() #Release the lock.

def test():
thread.start_new_thread(add_num, ('A',))
thread.start_new_thread(add_num, ('B',))

if name== 'main':
test()

Python 在thread的基础上还提供了一个高级的线程控制库,就是之前提到过的threading。Python的threading module是在建立在thread module基础之上的一个module,在threading module中,暴露了许多thread module中的属性。在thread module中,python提供了用户级的线程同步工具“Lock”对象。而在threading module中,python又提供了Lock对象的变种: RLock对象。RLock对象内部维护着一个Lock对象,它是一种可重入的对象。对于Lock对象而言,如果一个线程连续两次进行acquire操作,那么由于第一次acquire之后没有release,第二次acquire将挂起线程。这会导致Lock对象永远不会release,使得线程死锁。RLock对象允许一个线程多次对其进行acquire操作,因为在其内部通过一个counter变量维护着线程acquire的次数。而且每一次的acquire操作必须有一个release操作与之对应,在所有的release操作完成之后,别的线程才能申请该RLock对象。

下面来看看如何使用threading的RLock对象实现同步。

import threading
mylock = threading.RLock()
num=0

class myThread(threading.Thread):
def init(self, name):
threading.Thread.init(self)
self.t_name = name

def run(self):  
    global num  
    while True:  
        mylock.acquire()  
        print '\nThread(%s) locked, Number: %d'%(self.t_name, num)  
        if num>=4:  
            mylock.release()  
            print '\nThread(%s) released, Number: %d'%(self.t_name, num)  
            break  
        num+=1  
        print '\nThread(%s) released, Number: %d'%(self.t_name, num)  
        mylock.release()  

def test():
thread1 = myThread('A')
thread2 = myThread('B')
thread1.start()
thread2.start()

if name== 'main':
test()

我们把修改共享数据的代码成为“临界区”。必须将所有“临界区”都封闭在同一个锁对象的acquire和release之间。

2、 条件同步

锁只能提供最基本的同步。假如只在发生某些事件时才访问一个“临界区”,这时需要使用条件变量Condition。

Condition对象是对Lock对象的包装,在创建Condition对象时,其构造函数需要一个Lock对象作为参数,如果没有这个Lock对象参数,Condition将在内部自行创建一个Rlock对象。在Condition对象上,当然也可以调用acquire和release操作,因为内部的Lock对象本身就支持这些操作。但是Condition的价值在于其提供的wait和notify的语义。

条件变量是如何工作的呢?首先一个线程成功获得一个条件变量后,调用此条件变量的wait()方法会导致这个线程释放这个锁,并进入“blocked”状态,直到另一个线程调用同一个条件变量的notify()方法来唤醒那个进入“blocked”状态的线程。如果调用这个条件变量的notifyAll()方法的话就会唤醒所有的在等待的线程。

如果程序或者线程永远处于“blocked”状态的话,就会发生死锁。所以如果使用了锁、条件变量等同步机制的话,一定要注意仔细检查,防止死锁情况的发生。对于可能产生异常的临界区要使用异常处理机制中的finally子句来保证释放锁。等待一个条件变量的线程必须用notify()方法显式的唤醒,否则就永远沉默。保证每一个wait()方法调用都有一个相对应的notify()调用,当然也可以调用notifyAll()方法以防万一。

生产者与消费者问题是典型的同步问题。这里简单介绍两种不同的实现方法。

1, 条件变量

import threading

import time

class Producer(threading.Thread):

def __init__(self, t_name):  

    threading.Thread.__init__(self, name=t_name)  



def run(self):  

    global x  

    con.acquire()  

    if x > 0:  

        con.wait()  

    else:  

        for i in range(5):  

            x=x+1  

            print "producing..." + str(x)  

        con.notify()  

    print x  

    con.release()  

class Consumer(threading.Thread):

def __init__(self, t_name):  

    threading.Thread.__init__(self, name=t_name)  

def run(self):  

    global x  

    con.acquire()  

    if x == 0:  

        print 'consumer wait1'  

        con.wait()  

    else:  

        for i in range(5):  

            x=x-1  

            print "consuming..." + str(x)  

        con.notify()  

    print x  

    con.release()  

con = threading.Condition()

x=0

print 'start consumer'

c=Consumer('consumer')

print 'start producer'

p=Producer('producer')

p.start()

c.start()

p.join()

c.join()

print x

相关文章
|
20天前
|
调度 Python
微电网两阶段鲁棒优化经济调度方法(Python代码实现)
微电网两阶段鲁棒优化经济调度方法(Python代码实现)
|
1月前
|
Python
Python字符串center()方法详解 - 实现字符串居中对齐的完整指南
Python的`center()`方法用于将字符串居中,并通过指定宽度和填充字符美化输出格式,常用于文本对齐、标题及表格设计。
|
2月前
|
人工智能 安全 调度
Python并发编程之线程同步详解
并发编程在Python中至关重要,线程同步确保多线程程序正确运行。本文详解线程同步机制,包括互斥锁、信号量、事件、条件变量和队列,探讨全局解释器锁(GIL)的影响及解决线程同步问题的最佳实践,如避免全局变量、使用线程安全数据结构、精细化锁的使用等。通过示例代码帮助开发者理解并提升多线程程序的性能与可靠性。
|
19天前
|
机器学习/深度学习 数据采集 算法
【CNN-BiLSTM-attention】基于高斯混合模型聚类的风电场短期功率预测方法(Python&matlab代码实现)
【CNN-BiLSTM-attention】基于高斯混合模型聚类的风电场短期功率预测方法(Python&matlab代码实现)
|
2月前
|
JSON 数据安全/隐私保护 数据格式
拼多多批量下单软件,拼多多无限账号下单软件,python框架仅供学习参考
完整的拼多多自动化下单框架,包含登录、搜索商品、获取商品列表、下单等功能。
|
2月前
|
机器学习/深度学习 数据安全/隐私保护 计算机视觉
过三色刷脸技术,过三色刷脸技术教程,插件过人脸python分享学习
三色刷脸技术是基于RGB三通道分离的人脸特征提取方法,通过分析人脸在不同颜色通道的特征差异
|
2月前
|
数据采集 监控 调度
干货分享“用 多线程 爬取数据”:单线程 + 协程的效率反超 3 倍,这才是 Python 异步的正确打开方式
在 Python 爬虫中,多线程因 GIL 和切换开销效率低下,而协程通过用户态调度实现高并发,大幅提升爬取效率。本文详解协程原理、实战对比多线程性能,并提供最佳实践,助你掌握异步爬虫核心技术。
|
2月前
|
数据管理 开发工具 索引
在Python中借助Everything工具实现高效文件搜索的方法
使用上述方法,你就能在Python中利用Everything的强大搜索能力实现快速的文件搜索,这对于需要在大量文件中进行快速查找的场景尤其有用。此外,利用Python脚本可以灵活地将这一功能集成到更复杂的应用程序中,增强了自动化处理和数据管理的能力。
135 0
|
2月前
|
数据采集 存储 Java
多线程Python爬虫:加速大规模学术文献采集
多线程Python爬虫:加速大规模学术文献采集
|
2月前
|
安全 算法 Java
Java 多线程:线程安全与同步控制的深度解析
本文介绍了 Java 多线程开发的关键技术,涵盖线程的创建与启动、线程安全问题及其解决方案,包括 synchronized 关键字、原子类和线程间通信机制。通过示例代码讲解了多线程编程中的常见问题与优化方法,帮助开发者提升程序性能与稳定性。
111 0

热门文章

最新文章

推荐镜像

更多