精选:15款顶尖Python知识图谱(关系网络)绘制工具,数据分析的强力助手

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 这里有15款免费工具推荐:NetworkX(Python基础),Graph-tool(C++速度),Graphviz(可视化库),ipycytoscape(Jupyter集成),ipydagred3,ipySigma(NetworkX + Web),Netwulf(交互式),nxviz(Matplotlib绑定),Py3plex(复杂网络分析),Py4cytoscape(Python+Cytoscape),pydot(Graphviz接口),PyGraphistry(GPU加速),python-igraph,pyvis(交互式图形),SNAP(大规模网络分析)。绘制和理解网络图从未如此简单!

知识图谱(关系网络)可以用简单的形状和线条显示复杂的系统,帮助我们理解数据之间的联系。我们今天将介绍15个很好用的免费工具,可以帮助我们绘制网络图。

NetworkX

NetworkX是一个用于处理网络的Python工具。许多人在Python中处理图数据时使用NetworkX。它也是许多图AI工具的基础。

GitHub: https://github.com/networkx/networkx

Graph-tool

Graph-tool是一个用于处理网络的Python包。它可以:处理图数据,并且进行计算。Graph-tool不同于其他Python工具。它的主要部分是用c++编写的,所以它非常快,并且使用内存的更少。

https://graph-tool.skewed.de/static/doc

Graphviz

Graphviz使绘制图形变得容易。像一些pytorch的可视化库,还有xgboost等树型模型的可视化都是用了这个库

https://graphviz.org/

ipycytoscape

Cytoscape是一个查看和处理复杂网络的免费工具。它始于研究生物的科学家,但现在每个人都可以使用。

js是它的网页版本,ipy则是在Jupyter notebook中使用的版本。它可以让熟悉Pandas、NetworkX和NumPy等Python工具的人在notebook中显示网络数据,并通过简单的步骤更改其外观。

https://github.com/cytoscape/ipycytoscape

ipydagred3

Dagre是一个JavaScript的工具,它与一个名为dagre3 -d3的前端工具一起工作,该工具使用D3JS来显示箭头。而ipydagred3是一个在JupyterLab中使用dagred3封装。

GitHub: https://github.com/timkpaine/ipydagred3

ipySigma

Sigma.js是一个可以通过快速、流畅的图片绘制网络图的JavaScript工具。它可以很好地处理大量数据,并允许更改图的外观。

ipyssigma是JupyterLab的一个封装,它将Sigma.js与Python的NetworkX包结合在一起。可以web浏览器中查看网络结构。

GitHub: https://github.com/medialab/ipysigma

Netwulf

netulf是可以以有趣的交互式方式查看NetworkX图对象。它非常容易使用,可以直接从Python或Jupyter Notebook调用。

它对研究很有用,因为它可以快速预览和改变网络结构。只需给它一个Graph对象,就可以设计还可以进行保存。

GitHub: https://github.com/benmaier/netwulf

nxviz

nxviz是一个使用Matplotlib轻松绘制图数据的Python包,它可以制作不同类型的图形,如Circos, Arc, Matrix, Hive和Parallel plot。

https://github.com/ericmjl/nxviz

Py3plex

Py3plex是Python中用于探索和显示复杂网络的工具。它通过点或线的额外信息来分解、绘制和研究网络。

https://github.com/SkBlaz/py3plex

Py4cytoscape

Py4cytoscape是一个Python版本的Cytoscape工具。它可以让你在不学习新方法的情况下在R和Python之间切换网络的计算任务。它提供了许多在Python或Jupyter notebook中使用的功能。这个工具包非常适合R和Python双修的小伙伴使用。

https://github.com/cytoscape/py4cytoscape

pydot

pydot是Graphviz的Python接口,用纯Python编写。它可以解析并转储为Graphviz使用的DOT语言。

https://github.com/pydot/pydot

PyGraphistry

PyGraphistry是一个用于大图的Python库。可以帮助快速获取数据、提出问题、修改数据并看到全局。它需要graphhistry的服务器配合,所以可以处理大量的数据,并且支持gpu计算,所以计算的速度很快。

https://github.com/graphistry/pygraphistry

python-igraph

Python-igraph是在Python中使用igraph的一种方式。Igraph是一个用C语言制作的研究复杂网络的免费工具。它还可以与R、Mathematica和C/ c++一起使用。

https://github.com/igraph/python-igr‍aph

pyvis

pyvis是一个Python包,用于创建和可视化交互式图形网络。

https://github.com/WestHealth/pyvis

SNAP

SNAP是一种用于分析和处理大型网络的通用高性能系统。图由节点和节点之间的有向/无向/多边组成。网络是节点和/或边缘上有数据的图。

用c++编写的SNAP库是为快速工作和清晰的网络图而设计的。它处理有很多点和线的大网络,找出它们的形状,形成新的网络,并且可以在工作时改变一些东西。

https://github.com/snap-stanford/snap

https://avoid.overfit.cn/post/56bc3ed7328b4046bc5e5d1efa935a86

作者:Meng Li

目录
相关文章
|
5天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
6天前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
17 2
|
13天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
57 6
|
13天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
40 0
|
1天前
|
安全 Linux 网络安全
nmap 是一款强大的开源网络扫描工具,能检测目标的开放端口、服务类型和操作系统等信息
nmap 是一款强大的开源网络扫描工具,能检测目标的开放端口、服务类型和操作系统等信息。本文分三部分介绍 nmap:基本原理、使用方法及技巧、实际应用及案例分析。通过学习 nmap,您可以更好地了解网络拓扑和安全状况,提升网络安全管理和渗透测试能力。
11 5
|
2天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
15 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
6天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
21 3
|
7天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
19 2
|
11天前
|
数据采集 存储 XML
Python实现网络爬虫自动化:从基础到实践
本文将介绍如何使用Python编写网络爬虫,从最基础的请求与解析,到自动化爬取并处理复杂数据。我们将通过实例展示如何抓取网页内容、解析数据、处理图片文件等常用爬虫任务。
|
14天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
39 4