Python的GIL限制了CPython在多核下的并行计算,但通过替代解释器(如Jython, IronPython, PyPy)和多进程、异步IO可规避

简介: 【6月更文挑战第26天】Python的GIL限制了CPython在多核下的并行计算,但通过替代解释器(如Jython, IronPython, PyPy)和多进程、异步IO可规避。Numba、Cython等工具编译优化代码,未来社区可能探索更高级的并发解决方案。尽管GIL仍存在,现有策略已能有效提升并发性能。

Python 的全局解释器锁(GIL)问题尚未完全解决,因为在标准的 CPython 解释器中,为了保证线程安全和简化内存管理,GIL 仍然存在。尽管 Python 开发者社区一直在努力优化 GIL 的实现,并在某些版本中改进了 GIL 的性能表现,但从根本上来说,CPython 在多核系统上无法利用多个CPU核心同时执行独立的Python字节码这一限制依然存在。

不过,在应对 GIL 限制方面,有几种发展趋势:

  1. 替代实现:为了解决 GIL 对并行计算效率的影响,出现了不使用 GIL 的 Python 解释器实现,如 Jython、IronPython(它们运行在JVM和.NET CLR之上,不受Python GIL限制)、PyPy(它支持分代GIL以提高并发性能)以及实验性的新项目如 GraalPython 和 Pyston 等。

  2. 多进程与异步IO:Python 程序可以通过使用多进程(multiprocessing 模块)来规避 GIL,每个进程拥有自己的 Python 解释器实例和独立的 GIL,因此可以在多核 CPU 上实现真正的并行处理。此外,通过异步 I/O 库(例如 asyncio 或第三方库 Tornado、Twisted 等)可以实现高并发的 I/O 密集型应用,即使在单个进程中也能高效地进行非阻塞操作。

  3. NUMBA、Cython 等编译工具:对于高度计算密集型的任务,可以使用 Numba 这样的 JIT(Just-In-Time)编译器将 Python 代码转换为无需 GIL 的机器码,或者使用 Cython 编写混合 Python/C 代码来避免 GIL 的影响。

  4. 未来可能的方向:虽然目前没有官方声明表明会彻底移除 GIL,但随着计算机硬件的发展和编程模式的变化,Python 社区可能会继续探索更高级别的并发和并行解决方案,或者对 CPython 内部结构进行重大重构以适应多核处理器的充分利用。

综上所述,虽然 GIL 问题尚未彻底解决,但现有的技术和未来的发展方向已经提供了许多有效的方法来缓解其对并发性能的影响,并且在特定场景下实现了良好的并行计算能力。

相关文章
|
7月前
|
监控 编译器 Python
如何利用Python杀进程并保持驻留后台检测
本教程介绍如何使用Python编写进程监控与杀进程脚本,结合psutil库实现后台驻留、定时检测并强制终止指定进程。内容涵盖基础杀进程、多进程处理、自动退出机制、管理员权限启动及图形界面设计,并提供将脚本打包为exe的方法,适用于需持续清理顽固进程的场景。
|
10月前
|
Python
Python中Cp、Cpk、Pp、Ppk的计算与应用
总的来说,Cp、Cpk、Pp、Ppk是衡量过程能力的重要工具,它们可以帮助我们了解和改进生产过程,提高产品质量。
1114 13
|
10月前
|
存储 人工智能 算法
使用Python计算从位置x到y的最少步数
本文通过Python代码结合广度优先搜索(BFS)算法,解决从起点到终点的最少步数问题。以二维网格为例,机器人只能上下左右移动,目标是最短路径。BFS按层遍历,确保首次到达终点即为最短路径。文中提供完整Python实现,包括队列与访问标记数组的使用,并输出示例结果。此外,还探讨了双向BFS、Dijkstra及A*算法等优化方法,帮助读者深入理解最短路径问题及其高效解决方案。
292 0
|
11月前
|
机器学习/深度学习 API Python
Python 高级编程与实战:深入理解网络编程与异步IO
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧、数据科学、机器学习、Web 开发和 API 设计。本文将深入探讨 Python 在网络编程和异步IO中的应用,并通过实战项目帮助你掌握这些技术。
|
12月前
|
数据采集 Java 数据处理
Python实用技巧:轻松驾驭多线程与多进程,加速任务执行
在Python编程中,多线程和多进程是提升程序效率的关键工具。多线程适用于I/O密集型任务,如文件读写、网络请求;多进程则适合CPU密集型任务,如科学计算、图像处理。本文详细介绍这两种并发编程方式的基本用法及应用场景,并通过实例代码展示如何使用threading、multiprocessing模块及线程池、进程池来优化程序性能。结合实际案例,帮助读者掌握并发编程技巧,提高程序执行速度和资源利用率。
638 0
|
Python
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
244 18
|
Python
使用Python计算字符串的SHA-256散列值
使用Python计算字符串的SHA-256散列值
402 7
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
机器学习/深度学习 算法 编译器
Python程序到计算图一键转化,详解清华开源深度学习编译器MagPy
【10月更文挑战第26天】MagPy是一款由清华大学研发的开源深度学习编译器,可将Python程序一键转化为计算图,简化模型构建和优化过程。它支持多种深度学习框架,具备自动化、灵活性、优化性能好和易于扩展等特点,适用于模型构建、迁移、部署及教学研究。尽管MagPy具有诸多优势,但在算子支持、优化策略等方面仍面临挑战。
637 3
|
监控 JavaScript 前端开发
python中的线程和进程(一文带你了解)
欢迎来到瑞雨溪的博客,这里是一位热爱JavaScript和Vue的大一学生分享技术心得的地方。如果你从我的文章中有所收获,欢迎关注我,我将持续更新更多优质内容,你的支持是我前进的动力!🎉🎉🎉
218 0

推荐镜像

更多