运输层---UDP协议

简介: 运输层---UDP协议

一. 无连接运输:UDP

1.1 定义

  • UDP(User Datagram Protocol)用户数据报协议:由 [RFC 768] 定义的协议。只做运输层协议能做的最少的工作,除了复用/分解功能以及少量差错检测外,几乎没有对IP协议增加别的东西。

运输层协议最低限度必须提供一种复用/分解服务。

  • 构成:从应用进程得到数据,附加上源端口号字段和目的端口号字段,以及两个其他的小字段(长度字段,检验和字段checksum)形成报文段交付给网络层。
    (网络层将UDP提供的报文段封装到IP数据报中,然后尽力而为地交付给目标主机。)

1.2 特点

UDP不提供不必要报文段交付之外的额外功能

  1. 尽力而为的交付不可靠数据传输服务):不保证可靠交付,主机不需要维护复杂的连接状态。

QUIC协议(Quick UDP Internet Connections):快速UDP因特网连接,是一种基于 UDP 的传输层协议将UDP作为支撑运输协议并在UDP之上的应用层协议中实现可靠性保证了数据的完整性和有序性。

  1. 无连接的:通信时不需要创建连接(发送报文段之前,发送方域接收方运输层实体之间没有握手),减小了开销和发送数据前的时延。
  2. 无阻塞控制:不会影响发送端的发送频率。(与TCP相比发送时延少,交付时间短
  3. 无连接状态 :由于不提供可靠数据传输服务,也没有拥塞控制机制,UDP不维护连接状态,也不跟踪参数(接收/发送缓存,拥塞控制参数以及序号与确认号的参数)。
  4. 面向报文:只在应用层交下来的报文前增加了首部后就向下交付IP层
  5. 首部开销小:只有8个字节,相对于TCP的20个字节的首部要短
  6. 支持一对一、一对多、多对一、多对多的交互通信。

1.3 应用

  • DNS:
  • 使用UDP的优势:无需建立连接,运行速度快
  • 网络层将封装好的IP数据报发送给一个名字服务器,查询主机中的DNS应用程序等待响应。如果(由于底层网络丢失了查询或者响应或其他原因)未收到响应,要么向另一个名字服务器发送查询,要么通知调用它的应用程序无法获得响应。
  • 流媒体

一种网上即时传输影音以供观赏的一种技术与过程。

流媒体技术将一连串的媒体数据压缩后,经过网上分段发送数据,在网上即时传输影音以供观赏。此技术使得数据包得以像流水一样发送。如果不使用此技术,就必须在使用前下载整个媒体文件。

  • SNMP

SNMP(Simple Network Management Protocol)是一种用于网络管理的应用层协议,它为网络管理员提供了一种通过运行网络管理软件的中心计算机(即网络管理工作站)来管理设备的方法。

二. UDP报文段结构

UDP报文段包含数据报头(首部)和数据区两部分:

  • 数据报头:由4个字段(每个字段有2字节)组成,分别是:源端口、目的端口、报文长度和校验和。
  • 数据区:包含UDP数据,长度在8字节~65535字节之间,在终点交付报文时需要用到。

数据报头具体释义如下:

  • 源端口:可选字段,通常包含发送数据报的应用程序所使用的UDP端口。需要对方回信时选用,如果不需要对方回信,可置0。
  • 目的端口:接收端计算机上UDP软件使用的端口,占据16位。
  • 报文长度:该字段占据16位,表示UDP数据报长度,包含UDP报文头和UDP数据长度。因为UDP报文头长度是8个字节,所以这个值最小为8。
  • 校验和:检测UDP数据在传输中是否出错,有错则丢弃。该字段可选,当源主机不想计算校验和,则置0。

实际上计算检验和时UDP包含了伪首部,其中包括了源IP地址、目的IP地址、协议号、以及UDP数据的长度,这些信息也要包含在计算校验和的过程中,以确保数据的完整性和正确性。

三. UDP检验和

3.1 定义

  • 目的: 提供差错检测功能,检测在被传输报文段中的差错 (如比特反转)
  • 实现:
  • 发送方: UDP数据报分成若干个16位的比特字(如果数据报的长度不是16位的整数倍,则在末尾填充0),对所有比特字进行求和运算,求和时遇到的任何溢出都被回卷,取累加和的反码作为校验和,放在 UDP报文段中的检验和字段。

进位回卷: 如果累加和超过16位,则将高位的进位加到低位上

ps:这里的取反码是指将16比特01数据中的0与1反转互换,即1变为0,0变为1。

  • 接收方:接收到UDP数据报后会重新计算校验和,然后将计算得到的校验和与接收到的校验和进行比较。如果两者相同,则说明数据在传输过程中可能没有发生错误;如果不同,则说明数据被修改或损坏。

校验范围+校验和=1111111111111111 则通过校验, 否则没有通过校验

3.2 检验和计算实例

回卷:取出超过16位比特的进位(也就是数字1),与最后一位相加(如果出现多次溢出,则重复回卷过程直到无溢出),得到最后的和,再进一步得到检验和。

3.3 UDP检验和的局限

  1. UDP虽然提供差错检测,但是对差错恢复无能为力
  2. 某种实现:丢弃受损报文段
  3. 其他实现:将受损报文段交给应用程序并给出警告


目录
相关文章
|
4月前
|
存储 网络协议 算法
UDP 协议和 TCP 协议
本文介绍了UDP和TCP协议的基本结构与特性。UDP协议具有简单的报文结构,包括报头和载荷,报头由源端口、目的端口、报文长度和校验和组成。UDP使用CRC校验和来检测传输错误。相比之下,TCP协议提供更可靠的传输服务,其结构复杂,包含序列号、确认序号和标志位等字段。TCP通过确认应答和超时重传来保证数据传输的可靠性,并采用三次握手建立连接,四次挥手断开连接,确保通信的稳定性和完整性。
127 1
UDP 协议和 TCP 协议
|
16天前
|
XML JSON 算法
【JavaEE】——自定义协议方案、UDP协议
自定义协议,序列化,xml方案,json方案,protobuffer方案,UDP协议,校验和,比特翻转,CRC算法,md5算法
|
28天前
|
存储 网络协议 安全
用于 syslog 收集的协议:TCP、UDP、RELP
系统日志是从Linux/Unix设备及网络设备生成的日志,可通过syslog服务器集中管理。日志传输支持UDP、TCP和RELP协议。UDP无连接且不可靠,不推荐使用;TCP可靠,常用于rsyslog和syslog-ng;RELP提供可靠传输和反向确认。集中管理日志有助于故障排除和安全审计,EventLog Analyzer等工具可自动收集、解析和分析日志。
113 2
|
2月前
|
监控 网络协议 网络性能优化
网络通信的核心选择:TCP与UDP协议深度解析
在网络通信领域,TCP(传输控制协议)和UDP(用户数据报协议)是两种基础且截然不同的传输层协议。它们各自的特点和适用场景对于网络工程师和开发者来说至关重要。本文将深入探讨TCP和UDP的核心区别,并分析它们在实际应用中的选择依据。
70 3
|
2月前
|
网络协议 SEO
TCP连接管理与UDP协议IP协议与ethernet协议
TCP、UDP、IP和Ethernet协议是网络通信的基石,各自负责不同的功能和层次。TCP通过三次握手和四次挥手实现可靠的连接管理,适用于需要数据完整性的场景;UDP提供不可靠的传输服务,适用于低延迟要求的实时通信;IP协议负责数据包的寻址和路由,是网络层的重要协议;Ethernet协议定义了局域网的数据帧传输方式,广泛应用于局域网设备之间的通信。理解这些协议的工作原理和应用场景,有助于设计和维护高效可靠的网络系统。
55 4
|
4月前
|
网络协议
UDP 协议
UDP 协议
153 58
|
3月前
|
网络协议 网络性能优化 C#
C# 一分钟浅谈:UDP 与 TCP 协议区别
【10月更文挑战第8天】在网络编程中,传输层协议的选择对应用程序的性能和可靠性至关重要。本文介绍了 TCP 和 UDP 两种常用协议的基础概念、区别及应用场景,并通过 C# 代码示例详细说明了如何处理常见的问题和易错点。TCP 适用于需要可靠传输和顺序保证的场景,而 UDP 适用于对延迟敏感且可以容忍一定数据丢失的实时应用。
66 1
|
3月前
|
网络协议 算法 数据格式
【TCP/IP】UDP协议数据格式和报文格式
【TCP/IP】UDP协议数据格式和报文格式
230 3
|
3月前
|
存储 网络协议 算法
更深层次理解传输层两协议【UDP | TCP】【UDP 缓冲区 | TCP 8种策略 | 三次握手四次挥手】
UDP和TCP各有所长,UDP以其低延迟、轻量级的特点适用于对实时性要求极高的应用,而TCP凭借其强大的错误检测、流量控制和拥塞控制机制,确保了数据的可靠传输,适用于文件传输、网页浏览等场景。理解它们的工作原理,特别是UDP的缓冲区管理和TCP的8种策略,对于优化网络应用的性能、确保数据的高效和可靠传输至关重要。开发者在选择传输层协议时,应根据实际需求权衡利弊,合理利用这两项关键技术。
106 5
|
3月前
|
JavaScript 安全 Java
谈谈UDP、HTTP、SSL、TLS协议在java中的实际应用
下面我将详细介绍UDP、HTTP、SSL、TLS协议及其工作原理,并提供Java代码示例(由于Deno是一个基于Node.js的运行时,Java代码无法直接在Deno中运行,但可以通过理解Java示例来类比Deno中的实现)。
98 1