m基于深度学习的OFDM+QPSK链路信道估计和均衡算法误码率matlab仿真,对比LS,MMSE及LMMSE传统算法

简介: **摘要:**升级版MATLAB仿真对比了深度学习与LS、MMSE、LMMSE的OFDM信道估计算法,新增自动样本生成、复杂度分析及抗频偏性能评估。深度学习在无线通信中,尤其在OFDM的信道估计问题上展现潜力,解决了传统方法的局限。程序涉及信道估计器设计,深度学习模型通过学习导频信息估计信道响应,适应频域变化。核心代码展示了信号处理流程,包括编码、调制、信道模拟、降噪、信道估计和解调。

1.算法仿真效果
本程序系统是《m基于深度学习的OFDM信道估计和均衡算法误码率matlab仿真,对比了LS,MMSE以及LMMSE等传统的信道估计算法》的的升级。

升级前原文章链接

增加了训练样本自动产生功能,算法复杂度对比功能,算法抗频偏性能分析功能。

matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

2.算法涉及理论知识概要
随着无线通信的快速发展,5G正逐渐成长为支撑全社会各行业运作的大型基础性互联网络,其服务范围的大幅扩展对底层技术提出了诸多挑战,尤其是作为物理层关键技术之一的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)。近来,深度学习因其在计算机视觉以及自然语言处理领域中的优异表现而备受关注,其极强的普适性也为传统通信提供了新的发展空间。就OFDM系统中的信道估计问题展开深入研究,探索深度学习在该领域的应用可能。

    信道估计器是接收机一个很重要的组成部分。在OFDM系统中,信道估计器的设计上要有两个问题:一是导频信息的选择,由于无线信道的时变特性,需要接收机不断对信道进行跟踪,因此导频信息也必须不断的传送: 二是既有较低的复杂度又有良好的导频跟踪能力的信道估计器的设计,在确定导频发送方式和信道估计准则条件下,寻找最佳的信道估计器结构。 **在实际设计中,导频信息的选择和最佳估计器的设计通常又是相互关联的,因为估计器的性能与导频信息的传输方式有关。     

 基于OFDM 的通信系统如下:

3a37fda98783d5dac583ecd24bdbad31_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

基于深度学习的信道估计:

   深度学习(英语:deep learning),是一个多层神经网络是一种机器学习方法。在深度学习出现之前,由于诸如局部最优解和梯度消失之类的技术问题,没有对具有四层或更多层的深度神经网络进行充分的训练,并且其性能也不佳。但是,近年来,Hinton等人通过研究多层神经网络,提高学习所需的计算机功能以及通过Web的开发促进培训数据的采购,使充分学习成为可能。结果,它显示出高性能,压倒了其他方法,解决了与语音,图像和自然语言有关的问题,并在2010年代流行。

   深度学习(Deep Learning, DL),由Hinton等人于2006年提出,是机器学习(MachineLearning, ML)的一个新领域。深度学习被引入机器学习使其更接近于最初的目标----人工智能(AI,Artificial Intelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一个复杂的机器学习算法,在语言和图像识别方面取得的效果,远远超过先前相关技术。它在搜索技术、数据挖掘、机器学习、机器翻译、自然语言处理、多媒体学习、语音、推荐和个性化技术,以及其它相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。        基于深度学习的参数估计方法DL-CE,采用LS方法获取导频位置处的CFR,再通过所设计的深度学习估计网络获取各个数据符号位置的信道响应。由于在多径环境下,信道呈现频域选择性衰落,传统的线性插值方法无法跟踪信道的变化。基于深度学习的信道估计方法,同时估计信道响应与信道的频域相关系数,可以实时追踪信道的频域变化。

3.MATLAB核心程序```load DL_train\dl.mat
for i=1:length(SNR_dB)
i
Error = 0;
err_all = 0;
for iii=1:nloop(i)
%%
%以单天线方式产生测试信号
msg = rand(LenNc/4,1)>=0.5;
%turbo编码
seridata1 = func_turbo_code(msg,N,M);
seridata = [seridata1,zeros(1,Len
Nc-length(seridata1))]';
%QPSK映射
[Qpsk0,Dqpsk_pilot,symbol_bit] = func_piQPSK_mod(seridata);
%变换为矩阵
Qpsk_matrix = reshape(Qpsk0,fftlen,Nc);
[Pilot_in,pilot_num,Pilot_seq,pilot_space] = func_insert_pilot(Dqpsk_pilot,Qpsk_matrix,pilot_type,T,TG);
Pilot_in = fft(Pilot_in);
%sub carrier mapping
Pilot_in = func_subcarrierMap(Pilot_in);
%IFFT transform,产生OFDM信号
ifft_out = ifft(Pilot_in);
%插入包含间隔 ,循环前缀
Guard_int = ceil(BWs/fftlen);
Guard_int_ofdm = func_guard_interval_insert(ifft_out,fftlen,Guard_int);
%将矩阵数据转换为串行进行输出
Guard_int_ofdm_out = reshape(Guard_int_ofdm,1,(fftlen+Guard_int)*(Nc+pilot_num));

   %%
    %Step1:大规模MIMO信道
    [Hm,Hmmatrix]            = func_mychannels(Radius,Scale1,Scale2,Nh,Nv);       
    %Step2:多径参数和大规模MIMO参数输入到信道模型中
    %信道采样点数,每个调制符号采一个点
    [passchan_ofdm_symbol]   = func_conv_channels(Hmmatrix,Guard_int_ofdm_out,Nmultipath,Pow_avg,delay_multi,Fre_offset,timeval,iii);
    %Step3:噪声信道 
    Rec_ofdm_symbol          = awgn(passchan_ofdm_symbol,SNR_dB(i),'measured');

   %%
    %开始接收
    Guard_int_remove = func_guard_interval_remove(Rec_ofdm_symbol,(fftlen+Guard_int),Guard_int,(Nc+pilot_num));
    %FFT
    fft_out          = fft(Guard_int_remove);
    %sub carrier demapping
    fft_out          = func_desubcarrierMap(fft_out);
    fft_out          = ifft(fft_out);
    %信道估计
    %func_DL_est
    [Sig_Lrmmse,Hs]  = func_DLest(fft_out,pilot_space,Pilot_seq,pilot_num,delay_avg/timeval,4e-6/timeval,10^(SNR_dB(i)/10),Guard_int);
    %解调
    Dqpsk            = func_pideMapping(Sig_Lrmmse,fftlen*Nc);
    %turbo解码
    Dqpsk_decode     = [func_turbo_decode(2*Dqpsk(1:end-(Len*Nc-length(seridata1)))-1,N,M)]';
    %计算误码率
    err_num          = Len*Nc/4-length(find(msg==Dqpsk_decode(1:Len*Nc/4)));
    Error            = Error + err_num;
end
%计算误码率
err_all       = err_all+Len*Nc/4;
Err_Rate(i)   = Error/err_all/nloop(i);

end
......................................
0sj_001m
```

相关文章
|
6天前
|
算法 5G 数据安全/隐私保护
大规模MIMO通信系统信道估计matlab性能仿真,对比LS,OMP,MOMP以及CoSaMP
本文介绍了大规模MIMO系统中的信道估计方法,包括最小二乘法(LS)、正交匹配追踪(OMP)、多正交匹配追踪(MOMP)和压缩感知算法CoSaMP。展示了MATLAB 2022a仿真的结果,验证了不同算法在信道估计中的表现。最小二乘法适用于非稀疏信道,而OMP、MOMP和CoSaMP更适合稀疏信道。MATLAB核心程序实现了这些算法并进行了性能对比。以下是部分
152 84
|
14天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的USB摄像头实时视频采集与水果识别matlab仿真
本项目展示了使用MATLAB 2022a和USB摄像头识别显示器上不同水果图片的算法。通过预览图可见其准确识别效果,完整程序无水印。项目采用GoogleNet(Inception-v1)深度卷积神经网络,利用Inception模块捕捉多尺度特征。代码含详细中文注释及操作视频,便于理解和使用。
|
24天前
|
算法 数据安全/隐私保护
基于LS算法的OFDM+QPSK系统信道估计均衡matlab性能仿真
基于MATLAB 2022a的仿真展示了OFDM+QPSK系统中最小二乘(LS)算法的信道估计与均衡效果。OFDM利用多个低速率子载波提高频谱效率,通过循环前缀克服多径衰落。LS算法依据导频符号估计信道参数,进而设计均衡器以恢复数据符号。核心程序实现了OFDM信号处理流程,包括加性高斯白噪声的加入、保护间隔去除、快速傅立叶变换及信道估计与均衡等步骤,并最终计算误码率,验证了算法的有效性。
43 2
|
1月前
|
机器学习/深度学习 监控 算法
基于深度学习网络的人员行为视频检测系统matlab仿真,带GUI界面
本仿真展示了基于GoogLeNet的人员行为检测系统在Matlab 2022a上的实现效果,无水印。GoogLeNet采用创新的Inception模块,高效地提取视频中人员行为特征并进行分类。核心程序循环读取视频帧,每十帧执行一次分类,最终输出最频繁的行为类别如“乐队”、“乒乓球”等。此技术适用于智能监控等多个领域。
50 4
|
1月前
|
机器学习/深度学习 数据采集 算法
基于深度学习网络的USB摄像头实时视频采集与火焰检测matlab仿真
本项目使用MATLAB2022a实现基于YOLOv2的火焰检测系统。通过USB摄像头捕捉火焰视频,系统实时识别并标出火焰位置。核心流程包括:视频采集、火焰检测及数据预处理(图像标准化与增强)。YOLOv2模型经特定火焰数据集训练,能快速准确地识别火焰。系统含详细中文注释与操作指南,助力快速上手。
|
2月前
|
机器学习/深度学习 算法 BI
基于深度学习网络的USB摄像头实时视频采集与手势检测识别matlab仿真
**摘要:** 本文介绍了使用MATLAB2022a实现的基于GoogLeNet的USB摄像头手势识别系统。系统通过摄像头捕获视频,利用深度学习的卷积神经网络进行手势检测与识别。GoogLeNet网络的Inception模块优化了计算效率,避免过拟合。手势检测涉及RPN生成候选框,送入网络进行分类。系统架构包括视频采集、手势检测与识别、以及决策反馈。通过GPU加速和模型优化保证实时性能,应用于智能家居等场景。
|
6天前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
6天前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
29天前
|
算法
基于模糊控制算法的倒立摆控制系统matlab仿真
本项目构建了一个基于模糊控制算法的倒立摆控制系统,利用MATLAB 2022a实现了从不稳定到稳定状态的转变,并输出了相应的动画和收敛过程。模糊控制器通过对小车位置与摆的角度误差及其变化量进行模糊化处理,依据预设的模糊规则库进行模糊推理并最终去模糊化为精确的控制量,成功地使倒立摆维持在直立位置。该方法无需精确数学模型,适用于处理系统的非线性和不确定性。
基于模糊控制算法的倒立摆控制系统matlab仿真
|
7天前
|
资源调度 算法
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。