1 -> 二叉搜索树概念
二叉搜索树(BST, Binary Search Tree)又称二叉排序树或二叉查找树,它或者是一棵空树,或者具有以下性质的二叉树:
- 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
- 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
- 它的左右子树也分别为二叉搜索树
2 -> 二叉搜索树操作
int a [] = { 8 , 3 , 1 , 10 , 6 , 4 , 7 , 14 , 13 };
1. 二叉搜索树的查找
- 从根开始比较,查找,比根大则往右边走查找,比根小则往左边走查找。
- 最多查找高度次,走到空,还没找到,这个值不存在。
2. 二叉搜索树的插入
插入具体过程:
- 树为空,则直接新增节点,赋值给root指针。
- 树不空,按二叉搜索树性质查找插入位置,插入新节点。
3. 二叉搜索树的删除
首先查找元素是否在二叉搜索树中,如果不存在,则返回,否则要删除的节点可能分以下四种情况:
- 要删除的节点无孩子节点
- 要删除的节点只有左孩子节点
- 要删除的节点只有右孩子节点
- 要删除的节点有左、右孩子节点
看起来有4种情况,实际情况1可以与情况2或者3合并起来,因此真正的删除过程如下:
- 删除该节点且使删除节点的双亲节点指向被删除节点的左孩子节点——直接删除
- 删除该节点且使删除节点的双亲节点指向被删除节点的右孩子节点——直接删除
- 在它的右子树中寻找中序下的第一个节点(关键码最小),用它的值填补到被删除节点中,再来处理该节点的删除问题——替换法删除
3 -> 二叉搜索树的应用
1. K模型:K模型即只有Key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到的值。
比如:给一个单词word,判断该单词是否拼写正确,具体方式如下:
- 以词库中所有单词集合中的每个单词作为Key,构建一棵二叉搜索树
- 在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。
#pragma once #include <iostream> using namespace std; template<class K> struct BSTreeNode { BSTreeNode<K>* _left; BSTreeNode<K>* _right; K _key; BSTreeNode(const K& key) :_left(nullptr) , _right(nullptr) , _key(key) {} }; template<class K> class BSTree { typedef BSTreeNode<K> Node; public: bool Insert(const K& key) { if (_root == nullptr) { _root = new Node(key); return true; } Node* parent = nullptr; Node* cur = _root; while (cur) { parent = cur; if (cur->_key < key) { cur = cur->_right; } else if (cur->_key > key) { cur = cur->_left; } else { return false; } } cur = new Node(key); if (parent->_key < key) { parent->_right = cur; } else { parent->_left = cur; } return true; } bool Find(const K& key) { Node* cur = _root; while (cur) { if (cur->_key < key) { cur = cur->_right; } else if (cur->_key > key) { cur = cur->_left; } else { return true; } } return false; } bool Erase(const K& key) { Node* parent = nullptr; Node* cur = _root; while (cur) { if (cur->_key < key) { parent = cur; cur = cur->_right; } else if (cur->_key > key) { parent = cur; cur = cur->_left; } else { // 准备删除 if (cur->_left == nullptr) {//左为空 if (cur == _root) { _root = cur->_right; } else { if (cur == parent->_left) { parent->_left = cur->_right; } else { parent->_right = cur->_right; } } delete cur; } else if (cur->_right == nullptr) {//右为空 if (cur == _root) { _root = cur->_left; } else { if (cur == parent->_left) { parent->_left = cur->_left; } else { parent->_right = cur->_left; } } delete cur; } else {//左右都不为空 // 右树的最小节点(最左节点) Node* parent = cur; Node* subLeft = cur->_right; while (subLeft->_left) { parent = subLeft; subLeft = subLeft->_left; } swap(cur->_key, subLeft->_key); if (subLeft == parent->_left) parent->_left = subLeft->_right; else parent->_right = subLeft->_right; delete subLeft; } return true; } } return false; } void InOrder() { _InOrder(_root); cout << endl; } bool FindR(const K& key) { return _FindR(_root, key); } bool InsertR(const K& key) { return _InsertR(_root, key); } bool EraseR(const K& key) { return _EraseR(_root, key); } private: bool _EraseR(Node*& root, const K& key) { if (root == nullptr) return false; if (root->_key < key) { return _EraseR(root->_right, key); } else if (root->_key > key) { return _EraseR(root->_left, key); } else { // 删除 if (root->_left == nullptr) { Node* del = root; root = root->_right; delete del; return true; } else if (root->_right == nullptr) { Node* del = root; root = root->_left; delete del; return true; } else { Node* subLeft = root->_right; while (subLeft->_left) { subLeft = subLeft->_left; } swap(root->_key, subLeft->_key); // 转换成在子树去递归删除 return _EraseR(root->_right, key); } } } bool _InsertR(Node*& root, const K& key) { if (root == nullptr) { root = new Node(key); return true; } if (root->_key < key) return _InsertR(root->_right, key); else if (root->_key > key) return _InsertR(root->_left, key); else return false; } bool _FindR(Node* root, const K& key) { if (root == nullptr) { return false; } if (root->_key < key) { return _FindR(root->_right, key); } else if (root->_key > key) { return _FindR(root->_left, key); } else { return true; } } void _InOrder(Node* root) { if (root == nullptr) return; _InOrder(root->_left); cout << root->_key << " "; _InOrder(root->_right); } private: Node* _root = nullptr; };
2. KV模型:每一个关键码Key,都有与之对应的值Value,即<Key,Value>的键值对。该种方式在现实生活中非常常见:
- 比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英文单词与其对应的中文<word,chinese>就构成一种键值对。
- 再比如统计单词出现的次数,统计成功后,给定单词就可以快速找到其出现的次数,单词与其出现的次数就是<word,count>就构成一种键值对。
// 改造二叉搜索树为KV结构 template<class K, class V> struct BSTNode { BSTNode(const K& key = K(), const V& value = V()) : _pLeft(nullptr), _pRight(nullptr), _key(key), _Value(value) {} BSTNode<T>* _pLeft; BSTNode<T>* _pRight; K _key; V _value }; template<class K, class V> class BSTree { typedef BSTNode<K, V> Node; typedef Node* PNode; public: BSTree() : _pRoot(nullptr) {} PNode Find(const K& key); bool Insert(const K& key, const V& value) bool Erase(const K& key) private: PNode _pRoot; }; void TestBSTree3() { // 输入单词,查找单词对应的中文翻译 BSTree<string, string> dict; dict.Insert("string", "字符串"); dict.Insert("tree", "树"); dict.Insert("left", "左边、剩余"); dict.Insert("right", "右边"); dict.Insert("sort", "排序"); // 插入词库中所有单词 string str; while (cin >> str) { BSTreeNode<string, string>* ret = dict.Find(str); if (ret == nullptr) { cout << "单词拼写错误,词库中没有这个单词:" << str << endl; } else { cout << str << "中文翻译:" << ret->_value << endl; } } } void TestBSTree4() { // 统计水果出现的次数 string arr[] = { "苹果", "西瓜", "苹果", "西瓜", "苹果", "苹果", "西瓜", "苹果", "香蕉", "苹果", "香蕉" }; BSTree<string, int> countTree; for (const auto& str : arr) { // 先查找水果在不在搜索树中 // 1、不在,说明水果第一次出现,则插入<水果, 1> // 2、在,则查找到的节点中水果对应的次数++ //BSTreeNode<string, int>* ret = countTree.Find(str); auto ret = countTree.Find(str); if (ret == NULL) { countTree.Insert(str, 1); } else { ret->_value++; } } countTree.InOrder(); }
4 -> 二叉搜索树的性能分析
插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。
对有n个节点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是节点在二叉搜索树的深度的函数,即节点越深,比较次数越多。
但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:
最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树)。
最差情况下,二叉搜索树退化为单支树(或者类似单支树)。
感谢各位大佬支持!!!
互三啦!!!