【数据结构和算法】---栈和队列的互相实现

简介: 【数据结构和算法】---栈和队列的互相实现

一、用栈实现队列

具体题目可以参考LeetCode232. 用栈实现队列

首先要想到的是,队列是一种先进先出的结构,而栈是一种先进后出的结构。依此我们可以定义两个栈结构来模拟先进先出,既然要定义两个栈,那么为了方便调用,我们可以将这两个栈结构定义在一个结构体中,如下:

typedef struct {
    ST st1;//栈1
    ST st2;//栈2
} MyQueue;

实现 MyQueue类:

  • void push(int x)将元素 x推到队列的末尾;
  • int pop()从队列的开头移除并返回元素;
  • int peek()返回队列开头的元素;
  • boolean empty()如果队列为空,返回 true;否则,返回 false

1.1初始化队列

我们定义的结构体在主函数外部,为了让每个函数都能用到,那么我们就必须要用malloc来动态开辟空间,这样此结构会被保存在静态区,每次函数调用时便不会销毁此变量,然后再将此结构体中的栈初始化

MyQueue* myQueueCreate() 
{
    MyQueue* queue = (MyQueue*)malloc(sizeof(MyQueue));//动态开辟结构体变量
    //注意初始化栈的参数为地址
    StackInit(&queue->st1);//初始化栈1
    StackInit(&queue->st2);//初始化栈2
    return queue;
}

1.2模拟入队列

我们可以将栈1作为存数据的栈,那么每次入队列操作就是进栈操作(StackPush(&obj->st1, x);)。

void myQueuePush(MyQueue* obj, int x) 
{
    assert(obj);
    StackPush(&obj->st1, x);
}

1.3模拟出队列

  1. 思路1:

如果我们用栈1obj->st1来存放数据,在模拟出队列时我们首先要断言栈1不为空,那么当栈1不为空且我们需要出队列头元素时。此时就需要栈2obj->st2来暂存数据,即我们将栈1除栈底的全部元素都出栈并入栈到栈2obj->st2,然后再出栈1最后的元素并返回,这样就模拟了先入先出性质。还需要注意的是在返回最后一个元素前还需要再将所有数据从栈2再入到栈1。逻辑如下: 思路2:

栈1用来存数据,栈2用来出数据。  那么为什么栈2的元素可以直接出呢?当我们需要模拟出队列时,我们可以先将栈1中所以元素出栈并入栈到栈2,这样一来栈2中的top就相当于队列头元素。每次从栈2中出元素时要先判断栈2中是否有元素,若没有,就将栈1中的元素出栈并入栈到栈2中。大致逻辑如下:

与思路一相比较,思路二栈2无需重新入栈1,还可继续模拟出队列。只能说两种思路各有好处,下列代码实现使用的是思路一:

int myQueuePop(MyQueue* obj) 
{
    assert(obj);
    assert(StackSize(&obj->st1) != 0);//栈1不为空
    ST* empty = &obj->st2;//栈2为空
    ST* noempty = &obj->st1;//栈1不为空
    //将栈1除栈底的所有元素出栈并入栈到栈2
    while(StackSize(noempty) > 1)
    {
        StackPush(empty,StackTop(noempty));
        StackPop(noempty);
    }
    //找到队头
    int ret = StackTop(noempty);
    StackPop(noempty);
    //重新入栈1
    while(StackSize(empty) > 0)
    {
        StackPush(noempty,StackTop(empty));
        StackPop(empty);
    }
    return ret;
}

1.4取模拟的队列头元素

此函数实现与1.3模拟出队列方法相似,就不多介绍了,如下:

int myQueuePeek(MyQueue* obj)
{
    assert(obj);
    ST* empty = &obj->st2;
    ST* noempty = &obj->st1;
    //将栈1除栈底的所有元素出栈并入栈到栈2
    while(StackSize(noempty) > 1)
    {
        StackPush(empty,StackTop(noempty));
        StackPop(noempty);
    }
    //找到队头
    int ret = StackTop(noempty);
    StackPush(empty,ret);
    StackPop(noempty);
    //重新入栈1
    while(StackSize(empty) > 0)
    {
        StackPush(noempty,StackTop(empty));
        StackPop(empty);
    }
    return ret;
}

1.5判断队列是否为空

依据上面思路,因为栈1是用来存数据的,所以当栈1为空时就代表我们模拟的队列为空。

bool myQueueEmpty(MyQueue* obj) 
{
    assert(obj);
    return StackEmpty(&obj->st1);
}

二、用队列实现栈

具体题目可以参考LeetCode225. 用队列实现栈

与用栈实现队列相似,我们同样需要两个队列来模拟实现栈,且关键在于还原队列先入先出的性质,依此性质来实现函数。既然这样我们可以如下定义结构体:

typedef struct 
{
    Queue* q1;//队列1
    Queue* q2;//队列2
} MyStack;

我们可以看到与模拟队列不同的是,模拟栈的结构体中存放的是两个结构体指针,这与队列的实现方法有关。因为我们用的队列是用链表实现的,所以其每个节点都是组成队列的一部分,且我们应该通过指针将他们一个个都连接起来(即通过指针来寻找节点)。

至于用栈实现队列问题中的结构体我们存放的是两个关于栈的结构体,是因为我们所使用的栈使用数组来实现的,这样一来我们操作的就是栈结构体中某一个元素(即动态开辟的数组)。当然在我们也可以放两个栈结构体指针,只不过在下面初始化队列时(myQueueCreate() )我们需要额外malloc动态开辟栈结构大小的空间,然后将指针指向该空间的地址。

实现 MyStack类:

  • void push(int x)将元素 x压入栈顶;
  • int pop()移除并返回栈顶元素;
  • int top()返回栈顶元素;
  • boolean empty()如果栈是空的,返回 true;否则,返回 false

2.1初始化栈

malloc()动态开辟栈结构体没什么问题,与模拟队列相似。但为什么还要给结构体中的两个队列结构体指针动态开辟空间呢?这样不就违背了我们上面探讨的问题了吗?其实不然,这里的两个结构体指针事实上指向的是存放队列头指针和尾指针的结构体,如下:

typedef struct Queue
{
  QNode* phead;//队列头指针
  QNode* ptail;//队列尾指针
  int size;//长度
}Queue;

这样一来,基本每个函数都需要用到此结构体,那么我们就必须malloc开辟来增加作用域和生命周期。 最后再初始化这两个存放头/尾指针的结构体,并返回用来模拟栈的结构体地址。

MyStack* myStackCreate() 
{
    MyStack* pst = (MyStack*)malloc(sizeof(MyStack));
  pst->q1 = (Queue*)malloc(sizeof(Queue));
  pst->q2 = (Queue*)malloc(sizeof(Queue));
    QueueInit(pst->q1);
    QueueInit(pst->q2);
    return pst;
}

2.2模拟出栈

与模拟出队列不同的是,这里用来模拟出栈的两个队列都可以用来出栈和入栈,具体方法如下:

为了还原栈先入后出的性质,我们可以先找到不为空的队列(因为两个队列都有可能有数据,但不同时有),然后将有数据的队列(noempty)除队尾的一个节点全都出队列并入队列到无数据的队列(empty),这样一来就找到了尾节点(模拟的栈顶)。还需要注意的是,此时我们无需再将数据重新入到noempty。 逻辑大致如下:

int myStackPop(MyStack* obj) 
{
    //先假设队列1为空
    Queue* empty = obj->q1;
    Queue* noempty = obj->q2;
    //纠正
    if(QueueEmpty(obj->q2))
    {
        empty = obj->q2;
        noempty = obj->q1;
    }
    //noempty出,并入到empty
    while(QueueSize(noempty) > 1)
    {
        int cmp = QueueFront(noempty);
        QueuePop(noempty);
        QueuePush(empty, cmp);
    }
    //取到模拟的栈顶元素
  int ret = QueueFront(noempty);
  QueuePop(noempty);
    return ret;
}

2.3模拟入栈

依据上面的方法,我们是要将数据入到不为空的队列,简单的if语句便可完成筛选。

void myStackPush(MyStack* obj, int x) 
{
    assert(obj);
    if(!QueueEmpty(obj->q1))
    {
        QueuePush(obj->q1, x);
    }
    else
    {
        QueuePush(obj->q2, x);
    }
}

2.4取模拟的栈顶元素

同样我们需要找到不为空的那个队列,且事实上队列尾指针指向的那个节点就是模拟的栈的栈顶,我们只需返回此元素即可。

int myStackTop(MyStack* obj) 
{
    assert(obj);
    //找不为空的队列
    if(!QueueEmpty(obj->q1))
        return QueueBack(obj->q1);
    else
        return QueueBack(obj->q2);
}

2.5判读栈是否为空

当两个队列都没有数据时,那么模拟的栈就是空栈。

bool myStackEmpty(MyStack* obj) 
{
    assert(obj);
    return QueueEmpty(&obj->q1) && QueueEmpty(&obj->q2);
}


目录
相关文章
|
16天前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
26 1
|
19天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
63 4
|
17天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
17天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
25天前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
86 23
|
25天前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
57 20
|
17天前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
38 5
|
16天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
42 1
|
25天前
|
机器学习/深度学习 算法 C++
数据结构之鲸鱼算法
鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
43 0
|
25天前
|
算法 vr&ar 计算机视觉
数据结构之洪水填充算法(DFS)
洪水填充算法是一种基于深度优先搜索(DFS)的图像处理技术,主要用于区域填充和图像分割。通过递归或栈的方式探索图像中的连通区域并进行颜色替换。本文介绍了算法的基本原理、数据结构设计(如链表和栈)、核心代码实现及应用实例,展示了算法在图像编辑等领域的高效性和灵活性。同时,文中也讨论了算法的优缺点,如实现简单但可能存在堆栈溢出的风险等。
36 0