MTCNN(Multi-task Cascaded Convolutional Networks)

简介: MTCNN(Multi-task Cascaded Convolutional Networks)

MTCNN(Multi-task Cascaded Convolutional Networks)是一种经典的人脸检测和关键点定位网络,它由三个级联的卷积神经网络组成,用于实现人脸识别任务。

MTCNN的三个网络分别是:

  1. P-Net(Proposal Network):P-Net是MTCNN的第一个网络,它是一个轻量级的卷积神经网络,负责生成候选框(bounding box),即可能包含人脸的区域。P-Net会对输入图像进行多尺度的滑动窗口扫描,通过二分类来判断每个窗口是否包含人脸,并计算出候选框的位置和边界框的调整参数。

  2. R-Net(Refine Network):R-Net是MTCNN的第二个网络,它进一步筛选和优化候选框。R-Net接收P-Net生成的候选框作为输入,然后对这些候选框进行更准确的人脸分类和边界框回归。R-Net输出候选框的人脸分类概率和边界框的调整参数。

  3. O-Net(Output Network):O-Net是MTCNN的最后一个网络,也是最精细的网络。它接收R-Net生成的候选框作为输入,并进一步优化和筛选。O-Net通过更深层次的网络结构,对候选框进行更准确的人脸分类、关键点定位和边界框回归。O-Net输出人脸分类概率、关键点位置和边界框的调整参数。

MTCNN通过级联这三个网络,实现了对人脸的快速而准确的检测和定位。它能够处理不同尺度、姿态和遮挡的人脸,同时还可以估计人脸关键点的位置,如眼睛、鼻子和嘴巴等,为后续的人脸识别任务提供更多信息。

以下是一个简化的示例代码,演示如何使用MTCNN进行人脸检测和关键点定位。这里使用的是基于TensorFlow的开源实现,但请注意这只是一个简单的示例,并不包含完整的实现。在实际项目中,请确保使用合适的许可证和遵守相关法律法规。

import cv2
import numpy as np
from mtcnn import MTCNN

# 加载 MTCNN 模型
detector = MTCNN()

# 读取图像
image = cv2.imread('test.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

# 进行人脸检测和关键点定位
result = detector.detect_faces(image)

# 绘制检测结果
for face in result:
    bounding_box = face['box']
    keypoints = face['keypoints']

    cv2.rectangle(image,
                  (bounding_box[0], bounding_box[1]),
                  (bounding_box[0]+bounding_box[2], bounding_box[1] + bounding_box[3]),
                  (0, 155, 255),
                  2)

    cv2.circle(image,(keypoints['left_eye']), 2, (0,155,255), 2)
    cv2.circle(image,(keypoints['right_eye']), 2, (0,155,255), 2)
    cv2.circle(image,(keypoints['nose']), 2, (0,155,255), 2)
    cv2.circle(image,(keypoints['mouth_left']), 2, (0,155,255), 2)
    cv2.circle(image,(keypoints['mouth_right']), 2, (0,155,255), 2)

# 显示结果
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
cv2.imshow("result", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这个示例中,我们使用了一个名为 MTCNN 的人脸检测库进行人脸检测和关键点定位。该库通常会返回检测到的人脸位置和关键点信息,然后我们可以根据这些信息在图像上绘制出人脸框和关键点位置。具体的实现可能因库版本而有所不同,这里仅提供一个简单的示例供参考。

目录
相关文章
|
机器学习/深度学习 人工智能 自然语言处理
视觉 注意力机制——通道注意力、空间注意力、自注意力
本文介绍注意力机制的概念和基本原理,并站在计算机视觉CV角度,进一步介绍通道注意力、空间注意力、混合注意力、自注意力等。
11802 58
|
存储 人工智能 算法
YOLOv8界面-目标检测+语义分割+追踪+姿态识别(姿态估计)+界面DeepSort/ByteTrack-PyQt-GUI
YOLOv8界面-目标检测+语义分割+追踪+姿态识别(姿态估计)+界面DeepSort/ByteTrack-PyQt-GUI
|
11月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
1658 2
|
机器学习/深度学习 算法 PyTorch
【PyTorch实战演练】深入剖析MTCNN(多任务级联卷积神经网络)并使用30行代码实现人脸识别
【PyTorch实战演练】深入剖析MTCNN(多任务级联卷积神经网络)并使用30行代码实现人脸识别
1159 2
|
机器学习/深度学习 运维 监控
一文速览深度伪造检测(Detection of Deepfakes):未来技术的守门人
一文速览深度伪造检测(Detection of Deepfakes):未来技术的守门人
2790 0
|
9月前
|
计算机视觉 Python
PIL图像转换为Numpy数组:技术与案例详解
本文介绍了如何将PIL图像转换为Numpy数组,以便利用Numpy进行数学运算和向量化操作。首先简要介绍了PIL和Numpy的基本功能,然后详细说明了转换过程,包括导入库、打开图像文件、使用`np.array()`或`np.asarray()`函数进行转换,并通过打印数组形状验证转换结果。最后,通过裁剪、旋转和缩放等案例展示了转换后的应用,以及如何将Numpy数组转换回PIL图像。此外,还介绍了处理base64编码图像的完整流程。
296 4
|
9月前
|
存储 监控 算法
基于YOLOv5和树莓派4B平台
目标检测在计算机视觉领域中具有重要意义。YOLOv5(You Only Look One-level)是目标检测算法中的一种代表性方法,以其高效性和准确性备受关注,并且在各种目标检测任务中都表现出卓越的性能。本文将详细介绍如何在性能更强的计算机上训练YOLOv5模型,并将训练好的模型部署到树莓派4B上,通过树莓派的摄像头进行实时动物目标检测。 一、在电脑上训练YOLOv5模型 1. 安装Anaconda 在性能更强的计算机上安装Anaconda,方便管理Python环境和依赖。 从Anaconda官网(https://www.anaconda.com/products/distribu
517 6
|
Ubuntu Linux Shell
Linux - 记录问题:Ubuntu查看文件夹大小
Linux - 记录问题:Ubuntu查看文件夹大小
1086 0
|
数据可视化 前端开发 JavaScript
Echarts+JS实现数据分析可视化大屏!!附源码!!
Echarts+JS实现数据分析可视化大屏!!附源码!!
|
数据可视化 计算机视觉 Python
活体检测眨眼、张嘴、点头、摇头动作一网打尽:人脸面部活体检测系统【含Python源码+PyqtUI界面+原理详解】
活体检测眨眼、张嘴、点头、摇头动作一网打尽:人脸面部活体检测系统【含Python源码+PyqtUI界面+原理详解】