m基于深度学习的卫星遥感图像轮船检测系统matlab仿真,带GUI操作界面

简介: 在MATLAB 2022a中,使用GoogLeNet对卫星遥感图像进行轮船检测,展示了高效的目标识别。GoogLeNet的Inception架构结合全局平均池化增强模型泛化性。核心代码将图像切块并分类,预测为轮船的部分被突出显示,体现了深度学习在复杂场景检测中的应用。

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg

2.算法涉及理论知识概要
在卫星遥感图像轮船检测中,常用的深度学习模型主要包括卷积神经网络(CNN)、循环神经网络(RNN)、以及两者的混合模型,但最常使用的还是基于CNN的模型,特别是那些在目标检测任务中表现出色的模型,如YOLO(You Only Look Once)、SSD(Single Shot MultiBox Detector)、以及Googlenet等。

  基于GoogLeNet(也称为Inception网络)的卫星遥感图像轮船检测,是一种利用深度学习技术在复杂遥感场景中识别和定位轮船目标的先进方法。GoogLeNet以其独特的Inception结构闻名,这种结构设计旨在提升模型的深度和宽度,同时控制计算成本和过拟合风险。

58c473305778ca5ee8f7af415062e6f4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   利用GoogLeNet的多层Inception模块,对输入的卫星遥感图像进行特征提取。在GoogLeNet的尾部,使用全局平均池化(Global Average Pooling, GAP)替换传统的全连接层,以减少参数数量并提高泛化能力:

ba6bd1428ff311277ed1dac82feb5604_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  基于GoogLeNet的卫星遥感图像轮船检测,通过深度网络的层次特征提取和高效的Inception模块设计,实现了对复杂海洋场景中轮船目标的有效识别和精确定位。结合精心设计的损失函数和训练策略,该方法在提高检测精度的同时,还能保持模型的计算效率,是现代遥感图像分析和海洋监测中不可或缺的技术之一。随着深度学习技术的不断演进,未来的研究将进一步优化模型结构,提升模型的泛化能力和实时处理能力,为海洋安全、环境保护等领域提供更多技术支持。

3.MATLAB核心程序```% [Predicted_Label, Probability] = classify(net, II);
% imshow(im);
%
global CNT;
global im;
global Predicted_Label;

load gnet.mat

image2= im;
[RR,CC,KK] = size(image2);
LL = min(RR,CC);

%图片划分大小
R = floor(LL/16);
C = floor(LL/16);
[W,H,k] = size(im);

MASK = zeros(W,H);
CNT = 0;
for i = 1:floor(W/R)
[i,floor(W/R)]
for j = 1:floor(H/C)
tmps = imresize(im(R(i-1)+1:Ri,C(j-1)+1:Cj,:),[224,224]);
[Predicted_Label, Probability] = classify(net, tmps);

    if double(Predicted_Label)==2
       image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1)=im(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1)+60;
       image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2)=im(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2);
       image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3)=im(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3);
       CNT     = CNT+1;
    else
       image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1)=im(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1);
       image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2)=im(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2);
       image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3)=im(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3);
    end
end

end
imshow(image2);
0Y_027m

```

相关文章
|
30天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:智能质量检测与控制
使用Python实现深度学习模型:智能质量检测与控制 【10月更文挑战第8天】
161 62
使用Python实现深度学习模型:智能质量检测与控制
|
9天前
|
机器学习/深度学习 PyTorch TensorFlow
使用Python实现智能食品质量检测的深度学习模型
使用Python实现智能食品质量检测的深度学习模型
44 1
|
15天前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
28 7
|
30天前
|
机器学习/深度学习 运维 监控
深度学习之异常检测
基于深度学习的异常检测是一项重要的研究领域,主要用于识别数据中的异常样本或行为。异常检测广泛应用于多个领域,如网络安全、金融欺诈检测、工业设备预测性维护、医疗诊断等。
106 2
|
2月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
97 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
1月前
|
机器学习/深度学习 传感器 数据采集
深度学习之设备异常检测与预测性维护
基于深度学习的设备异常检测与预测性维护是一项利用深度学习技术分析设备运行数据,实时检测设备运行过程中的异常情况,并预测未来可能的故障,以便提前进行维护,防止意外停机和生产中断。
50 1
|
2月前
|
机器学习/深度学习 并行计算 PyTorch
图像检测【YOLOv5】——深度学习
Anaconda的安装配置:(Anaconda是一个开源的Python发行版本,包括Conda、Python以及很多安装好的工具包,比如:numpy,pandas等,其中conda是一个开源包和环境管理器,可以用于在同一个电脑上安装不同版本的软件包,并且可以在不同环境之间切换,是深度学习的必备平台。) 一.Anaconda安装配置. 1.首先进入官网:https://repo.anaconda.com,选择View All Installers. 2.打开看到的界面是Anaconda的所以安装包版本,Anaconda3就代表是Python3版本,后面跟的是发行日期,我选择了最近的2022
67 28
|
23天前
|
机器学习/深度学习 自然语言处理 监控
深度学习之声音事件检测
基于深度学习的声音事件检测(Sound Event Detection, SED)是指从音频数据中检测并识别出特定的声音事件(如玻璃破碎、狗叫声、警报声等)。这种技术被广泛应用于智能家居、城市监控、医疗监护等领域,随着深度学习的进步,其性能和准确性得到了显著提升。
47 0
|
2月前
|
机器学习/深度学习 数据采集 网络安全
使用Python实现深度学习模型:智能网络安全威胁检测
使用Python实现深度学习模型:智能网络安全威胁检测
189 5
|
27天前
|
机器学习/深度学习 数据采集 数据挖掘
深度学习之地形分类与变化检测
基于深度学习的地形分类与变化检测是遥感领域的一个关键应用,利用深度学习技术从卫星、无人机等地球观测平台获取的遥感数据中自动分析地表特征,并识别地形的变化。这一技术被广泛应用于城市规划、环境监测、灾害预警、土地利用变化分析等领域。
78 0